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SIMILAR SOLUTIONS FOR THE COMPRESSIBLE LAMINAR BOUNDARY LAYER WITH HEAT
TRANSFER AND PRESSURE GRADIENT '.2

By Crarexce B. Conex and Ent REsHoTKO

SUMMARY

Stewartson’s transformation is applied to the laminar com-
pressible  boundary-layer equations and the requirement of
similarity is introduced, resulting in a set of ordinary nonlinear
differential equations previously quoted by Stewartson, but
unsolved.  The requirements of the system are Prandtl number
of 1.0, linear viscosily-tem perature relation across the boundary
layer, an isothermal surface, and the particular distributions
of free-stream velocity consistent with similar solutions. This
system admits axial pressure gradients of arbitrary magnitude,
heat flur normal to the surface, and arbitrary Mach numbers.

The system of differential equations is transformed to an
integral system, with the velocity ratio as the independent
variable.  For this system, solutions are found by digital com-
putation for pressure gradients varying from that causing
separation to the infinitely favorable gradient and for wall
temperatures from absolute zero to twice the free-stream stagna-
tion temperature. Some solutions for separated flows are also
presented.

For favorable pressure gradients, the solutions are wunigue.
For adverse pressure gradients, where the solutions are not
unique, two of the infinite family of possible solutions are
identified as the only solutions wyielding finite displacement
thicknesses.  For the case of farorable pressure gradients with
heated walls, the velocity within a portion of the boundary
layer 1s shown to exceed the local external velocity. The raria-
tion of a Reynolds analogy parameter, which indicates the
ratio of skin friction to heat transfer, is from zero to 7.4 for a
surface of temperature twice the free-stream stagnation temper-
ature, and from zero to 2.8 for a surface held at absclute zero,
where the value 2 applies to a flat plate.

INTRODUCTION

Factors that affect the development of laminar boundary
layers are pressure gradient, Mach number, and heat trans-
fer, plus the propertics of the fluid under consideration.
Since mathematical complexities preclude solutions of this
problem in a completely general fashion, the literature con-
sists largely of solutions treating particular combiunations of

these factors. For the flow of an ideal gas over a surface
without pressure gradient, the remaining factors have been
taken into account completely by Crocco (ref. 2) and Chap-
man and Rubesin (ref. 3). For small pressure gradicnts,
Low (ref. 4) has, by a perturbation analysis, treated the gen-
eral problem of the isothermal surface. With the introduc-
tion of pressure gradients of arbitrary magnitude, other
restrictions become necessary.  The assumption of constant
fluid properties (density, viscosity, ete.), for example, leads
to the greatest simplification—the separation of the mo-
mentum and energy equations.  With this assumption, for a
special case of a decelerating stream, Howarth (ref. 5) has
obtained a series solution to the momentum equation. The
introduction of a similarity covcept (that the velocity or
temperature profiles mayv always be expressed in terms of a
single parameter) leads to a power-law free-stream velocity
distribution. The momentum equation of this problem was
first solved by Falkner and Skan (ref. 6), whose caleulations
were then improved by Hartree (ref. 7); the energy equation
was later treated by Eckert (ref. §) and others (refs. 9 and
10). For the same problem the restriction of constant {luid
properties may be removed by alternatively requiring that
the Mach number be essentially zero (ref. 11) or that the
Mach number and the heat transfer be limited to small
values (ref. 12).

Hlingworth (ref. 13) and Stewartson (ref. 14) have dem-
onstrated that, tor an insulated surface in a fluid with a
Prandtl nvumber of 1.0, any compressible boundary-laver
problem may be transformed to a corresponding problem in
an incompressible fluid; the ecarlier solutions thus become
applicable to certain compressible problems.  For the case of
heat flux across the surface, the transformation of Stewartson
(ref. 14) with the concept of similarity introduced leads to a
set of nonlinear ordinary differential equations previously
quoted (ref. 14), but unsolved. Solutions to this set of
cquations, which arc presented herein, ave applicable to
flows at arbitrary Mach namber, pressure gradients of arbi-
trary magnitude (but of a form consistent with the require-
ments of similarity), and arbitrary but constant wall tem-
perature.®

1t Supersedes NACA TN 3325, “Similar Solutions for the Compressible Laminar Boundary Layer with Heat Transfer and Pressure Gradient,” by Clarence B, Cohen and Eli Reshotko, 1955,

2 The principal developments of this paper, which is part of the doctoral dissertation of the senior author (ref. 1D, were carried out under the stimulus and guidance of Professor Luigi Croceo
and the sponsorship of the Daniel and Florence Guggenheim Foundation. The final analysis and the computations were completed at the NACA Lewis laboratory during the spring ol 1954,

3 Further solutions to these equations have heen published recently by Levy (ref. 15) and by Li and Nagamatsu (ref. 16). The relation between these and the present solutions is de-
seribed herein, The present investigation includes ranges of variables not treated in these references; for example, favorable pressure gradients applicable to supersonie nozzles and values of
adverse pressure gradients including that causing separation.  For adverse pressure gradients, the problems of uniqueness and multiple solutions are also considered in some detail.  The solu-
tions of refs, 15 and 16 were obtained by means of a differential analyzer, whereas the present sohiutions were obtained by digital caleulation and are presented in tabular form.




Since free-stream velocity distributions of the form re-
quired by similarity are not generally encountered in prac-
tice, the utility of these solutions is principally as follows:
(1) The effects of pressure gradient, wall temperature, and
Mach number may be viewed qualitatively; (2) the results
may be used as a check on any approximate method (such as
a Karman-Pohlhausen method) for reliability; (3) the flow
to be solved may be divided intuitively into segments, and
the solution for each segment may be matched by some
arbitrary technique; or (4) the results may be used to con-
struct a new simple method (of the integral type) for the
caleulation of the laminar compressible boundary layer with
heat transfer. This latter analysis has been carried out,

. utilizing the solutions herein given, and is presented in
reference 17,
STEWARTSON’S EQUATIONS

BOUNDARY-LAYER EQUATIONS

The equations of the steady two-dimensional compressible

laminar boundary layver for perfect fluids are:

Continuity:
o) o}
a}(pu)i-ag(pwzzo (1)
Momentum:
bu bp o] >
pu~+ i br/
5 2
/4
dy 0
Energy:
oh Oh D m bh) ) .
Pl TP Oyau br b:/ Proy T oy ®)
(All svmbols are defined in appendix A.)
The viscosity law to be assumed is
! 4)

po  to

Equation (4) is of the form taken by Chapman and Rubesin
(ref. 3), except that the reference conditions (uo,to) are free-
stream stagnation values, since in the presence of pressure
gradient. the local “external’” values are not constant along
the outer edge of the boundary layer. The constant M is
used to mateh the viscosity with the Sutherland value at a
desired station. [If this station is taken to be the surface,
assumed to be at constant temperature, the result is

. l)+kvu =
A= \/ IO fu +k\ U (.‘))

where ky,=Sutherland’s constant (for air, k,,=—198.6° R).
The viscosity law of equations (4) and (5) was demon-
strated to be adequate for a flat plate (ref. 3) by compari-
son with the more exact caleulations of reference 2. In
the present case no such comparison is available.

STEWARTSON'S TRANSFORMATION

The velocities in the equations of motion (1) to (3) can be
replaced through the definition of a stream function:
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]
\l///:p-
Po
(6a)
Y=—F
! Po
If the quantity X is introduced from equation (4), a slight

modification of Stewartson’s transformation may be written
Pede gy

X:JI)\
o Poao

a,
Y= *f o Y

The transformed coordinates are now represented by upper-
case letters (X,Y), and the subscript e refers to local condi-
tions at the outer edge of the boundary layer (external).
The subscript 0 refers to frec-stream stagnation values.

Applying equations (4) and (6) to the boundary-layer
equations (1), (2), and (3) and assuming that Pr and ¢, are
constant (but not yet requiring that Pr=1) result in the
following equations:

(6b)

{x+Vy=0 (7
U4 VU=, (14-8) 4ol Tyy (8)
y— .
Ly Vs
P e
v 300 DT,
1+ M
(9
where the enthalpy function S is defined for convenience as
by
S“E_l (10)

and A, is the local stagnation enthalpy. The stream function
has been replaced by the transformed velocities (U,V)
through the relations

U'=yy
Vi=—yy
The resulting relation between the transformed and physical
longitudinal veloeities is U=% u.
e

The boundary conditions applicable to the system (7) to
(9) are:

U(X,00=0 )
V(X,0)=0
S
S(X,0)=S, or [DY(X()) ( )] L .
{im §=0
Yo
lim U=U,(X) J
Yo
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The solution S=0 and the resultant continuity and mo-
mentum equations (7) and (8) make up the extremely useful
correlation developed by Stewartson between compressible
and incontpressible boundary layers on insulated surfaces
with Pr=1. Another special case is that of U, =0. Then,

if Pr=1, the relation S=8, < o )satlsﬁes equation (9);

this is Crocco’s integral of the energy equation for the flat
plate (ref. 2).
SIMILARITY REQUIREMENTS

When a pressure gradient exists and the surface is not in-
sulated, it is necessary to find a means of solving the system
(7) to (9) subject to the boundary conditions (11). To this
end, the question will be asked: Under what conditions can
this system be reduced to a system of ordinary differential
equations by the assumption that the boundary-layer pro-
files are functions of a similarity variable 5 and that the wall
temperature is constant? This question may be resolved
by inserting the following assumed relations into the system
(7) to (9) and observing the conditions required for obtaining
ordinary differential equations:

y=AXC? f(n)
Y=BX'[ 'y 12)
S=S8(n)

where 4, B,a, b, p, and ¢ are undetermined constants. This
procedure has been carried out by Li and Nagamatsu (ref. 18)
for Pr=1. In that analysis it was concluded that four
classes of similar solutions are possible. It has been pointed
out (ref. 19) that three of these four classes can be reduced
identically to the case which requires that
U,=CX" (13)
while the remaining case requires that
U,= (" exp ((bX) (14) *

Corresponding analyses for incompressible flow, including
conditions for similarity and the case of the exponential free-
stream velocity, have been made by Mangler (ref. 20) and
Goldstein (ref. 21), respectively.

When equations (12) are used in the form

X
y=1n >\/2,”,‘;Z1

m+1 U,
= Y 4\/ VO‘Y
the system of ordinary differential equations corresponding

to the power-law velocity distribution of equation (13) may
be written

§ A=

(15)

(=1-9)
_pp[ 0=z
1+f —ap

Sll+1)l‘fS,:(1 (‘f/f///_l_flIZ) (16)

2m
3
m—+1

where primes

The pressure-gradient parameter 8 is defined as g=

and the velocity ratio i1s U/U,=uju,=f",
denote differentiation with respect to 7.
The boundary conditions are

J(0)=/"(0)=01
S(0)=S.
lim f'=1 - (17

n—®

lim S=0

n—o®©

Since M, may, in general, depend on «, the right member of
the energy equation is not yet functionally consistent with
the left member for arbitrary M, and Pr. Thus, the right
member of the energy equation (16) must be zero or a fune-
tion of n to be consistent with the left member. This may
be achieved in the following ways: (1) The external Mach
number may be a constant other than zero; (2) the external
Mach number may be zero; (3) the Prandtl number may
equal 1; (4) the factor '

(7—1)\12
1+ Jl“

may be approxinmtely 2 corresponding to hypersonic flow;
or (5) the ratio of specific heats v may equal 1.

The case of constant external Mach number is the flat-
plate problem (8=0) and, the solution to the momentum
equation being known, the energy equation could be inte-
grated directly. The flat-plate problem has already been
solved with great accuracy and completeness by Crocco
(ref. 2). If the pressure gradient is small enough, it may
be reasonable to consider A1, constant in the energy equation
in spite of the gradient, but to retain the pressure-gradient
parameter in the momentum equation. However, this
problem is treated more completely by the analysis of refer-
ence 4.

The case M,=0 (with arbitrary 8) produces the equations
of Levy and Seban (ref. 22). In that aunalysis approximate
solutions were obtained by the assumption of simple forms
for the velocity and temperature profiles that contained
undetermined coeflicients. These cocflicients were then
evaluated by use of the boundary conditions. Because the
actual profiles cannot be simply represented, this method
is not reliable in some ranges even if the Mach number is
nearly zero. Brown and Donoughe (ref. 11) also considered
the low Mach number problem with variable fluid properties
and Pr,=0.7. The system of equations encountered in that
analysis is much more complicated than the present system
because of the power-law viscosity, conductivity, and speeifie-
heat relations used. These refinements do not alter the
effects of omitting the viscous-dissipation and compressive-
work terms, which mav be significant at bigher Mach
numbers.

4+ It was shown in reference 19 that, for the exponential case (eq. (14)) with C3>0, the system (7) to (9) can be reduced to the ordinary differential equations (16), but with 8=2. For <0,
the f* term in equations (16) isreplaced by —f"””. In this case, with §=0, it can be shown that, because of the sign of the £/ term, no solution is possible in which the veloeity ratio approaches

its boundary condition smoothly. A question is thus raised as to the validity of any possible solution for C2<{O regardless of the value of S.

be omitted from consideration.

For the remainder of this paper, this class will
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The case of hypersonic flow requires the introduction of
the cflects of displacement thickness upon pressure gradient.
For example, for the flat plate, Lees (ref. 23) has shown
that the induced hypersonic pressure gradient corresponds to
p=""".

Y

The possibility of assuming y=1 does not simplify the
equations more than does the assumption of Mach number
zero. For most gases, the assumption of y=1 is physically
unrcasonable. Therefore, this case does not appear to
warrant further consideration.

If strong pressure gradients and reasonably high Mach
numbers are to be considered, the most inclusive category
is that of Pr=1, with the result that equations (16) become

."N,_f'ﬁ'//:ﬁ(]“?_ 1 ___S)
S" 418" =0

This case is not treated herein.

(18a)
(18h)

with the boundary conditions (17). Equations (18) were
derived by Stewartson by assigning similarity relations
corresponding to (15) to the system (7) to (9) with Pr=1;
Lhiowever, no solution was indicated.

The comparison between assuming that MM.=0 or that
Pr=1 may perhaps be indicated by examination of the
solutions to the insulated-flat-plate problem, which include
effeets of both Prandtl number and Mach number (ref. 2).
If M.=0, the viscous-dissipation and compressive-work
terms arve omitted in equation (3). Then the predicted
static-temperature profile is a constant rather than the
correct variation from free-stream static to recovery temper-
ature at the wall. However, if Pr=1 is assumed, a constant
stagnation temperature is predicted rather than the actual
slight variation in this quantity. The latter discrepancy
is small compared with the former.

METHOD OF SOLUTION

Equations (18) with boundary conditions (17) compose
the system to be solved for the dependent variables f(n)
and S(n). Because of the nonlinearity of the svstem, its
high order (fifth), and its classification as a ‘“two-point
boundary-value problem,” no standard integration methods
will yield results expressible in closed form. Methods appli-
cable to equations of this type may be classified as either (1)
forward integrations or (2) integrations by methods of suc-
cessive approximations.

By “forward integration’” is meant the progressive inte-
gration of the equations from one (initial) boundary to the
other. For this purpose several sets of initial values of the
derivatives are assumed. Then the final boundary values
obtained are compared with those specified and, after interpo-
lation of the initial values, this trial-and-error process is
repeated until the final boundary conditions are satisfied.
The integrations may be carried out by the use of either an
analog computer (mechanical or electrical) giving continuous
integrals or by digital computations involving finite-differ-
ence integration. Although generally applicable, a disad-
vantage associated with forward integration of nonlinear
equations is the lack of any inherent convergence mechanism.
Thus, the approach to the correct initial values depends al-

F7.

most entirely on the intuition and experience of the one
performing the calculations. This method is particularly
troublesome for a problem with more than one dependent
variable, since evidence for the fitness of a given initial value
may be obscured by a poor selection of the corresponding
initial value of another dependent variable. Furthermore,
when an analog computer is employed, the accuracy is
generally limited, particularly for nonlinear equations where
in certain regions the results tend to be highly sensitive to the
chosen initial values. 1If digital computation is utilized to
obtain a desired degree of accuracy, the procedure may be-
come excessively tedious.

Suceessive approximation methods generally assume an en-
tire function for the dependent variables (satisfying as many
of the boundary conditions as possible) rather than only the
initial derivatives. Then, by use of the differential equa-
tions, a procedure is developed for estimating the error as a
function of the independent variables. This error is applied
to the original choice, and the process is repeated until
satisfactory convergence occurs.  An example of a method of
successive approximation i1s Picard’s method.

A difficulty shared by both these methods arises when the
range of integration is infinite. Then it is necessary to decide
upon a finite value of the independent variable at which the
boundary conditions may be approximately satisfied and the
degree to which they may be satisfied. This suggests the
desirability of changing to an independent variable so that
only a finite range of integration is required. In the present
problem this change of variables can be achieved by following
a method used by Crocco for the solution of the compressible
flat-plate boundary layer (ref. 2). The concept is advanced
that the velocity is a more suitable independent variable
since it is bounded. This concept leads to a set of equations
conveniently handled by a method of successive approxima-
tions.

TRANSFORMATION TO VELOCITY PLANE

To accomplish the transformation to the velocity ratio f’
as the independent variable, the following identity may be
used:

d_,., d
(%=f df’ (19)

This identity may be applied to /'’ and f as follows:

crrr__ prer d./“”
/ *f (1//
RS (T Ed (20
(SN ks
J *jo fdn= | "y j 7@

where the dummy variable of integration is & and f/(§€)
represents the functional relation between /7 and f’, that is,
The primes continue to denote differentiation with
respeet to ».

Inserting equations (20) into the momentum equation
(18a) results n

N T e
A TR T (21)
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which satisfies the following condition at f'=0 required by
the momentum equation

fu'=—B(1+8y) (22)

Now, if equation (21) is integrated once with respect to f’
and if the limits of integration are chosen so that (f),.,=0,
the result is

b Edt 8 LE—1—S8)
d f 1 - 77 d
1= Join | s ], S e
By inverting the order of integration (or by integrating
by parts) the double integral may be reduced to two single
integrals, resulting in

) Gy [NUb_g [ ELSio
) N I ] IR

(23)

(24)

Equation (24) is the form of the momentum equation as it
will be used in this report. The subscript j is the iteration
number in the method of successive approximations.

A corresponding form of the energy equation is obtained
bx writing equation (18b) as

S’
tST/' = _f

and integrating with respect to 9, to get
In S’z—ff(hﬁL constant (23)

Equation (18a) may be written

f;// d77+6 (f I_S) d")

fdn=—

—d.f‘ll (f/)
fll +6

—5) .,
S

Substitution of this expression into equation (25) results in

i 144 2
In §'= %,,r—ﬁfg f”(s)SkE) dt+ constant
or the equivalent expression

Cof "I () (26)
_ FE-1—-8(E)
J(E)_e‘(p [ ﬁJ f/l(s )]2 dél]

If this expression is integrated once again and the boundary
conditions S(0)=S,, (S);,-,=0 are required, the result is

where

j J (9
S jJ,@)ds

(27)

Inspection of equations (24) and (27) indicates that the
integrals to be evaluated are singular, or indeterminate, at

5 1t should be noted that all but one of the presented solutions for S.=0 are those first obtained by Hartree (ref. 7) for the problem of Falkner and Skan (ref. 6).
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the upper limit. To evaluate these integrals, closed-form
expressions must be obtained for the integrands in this range.
This requires knowledge of the solution of the system (18)
for large n (near f’=1). This “asymptotic solution’” and
its development are given in appendix B. The results show
that equation (24) can be used in its present form, but that
equation (27) must be modified to

e1—a+ [ T
1—¢
T =+ | e

8,41
Sw

(28)

where ¢ is an arbitrary small quantity (e<1). In this form
the singularity has been removed. Equations (24) and (28)
constitute the system used in the present investigation.
The convergence of this system is discussed in appendix C,
and the method of calculation by digital computer in
appendix D.

PROPERTIES OF SOLUTIONS

In the following sections the solutions obtained in this
study are presented and their properties are discussed. 'The
two parameters defining a case are S, and 8. The enthalpy
function evaluated at the wall S, determines the wall
temperature through the relation

to=to(1+S,) (29)

Thus, S,=—1 corresponds to a wall temperature of
absolute zero, and S,=1 corresponds to a wall at twice the
free-stream stagnation temperature. The case S,=0 cor-
responds to a wall at the free-stream stagnation temperature,
which for Pr=1 is the case of an insulated surface.

The pressure-gradient parameter 8 is rvelated to the
exponent m of the velocity distribution in the transformed

plane U,=CX™ through the relation
2m
B_m—{—l

For a velocity distribution of this form, m can be represented
as

mz(”_) (g J “apde (30)
e 0 :

U,

It is apparent that <0 (m<0) corresponds to an unfavor-
able gradient; 8=0 (m=0) corresponds to flat-plate flow;
and f=2 (m= ) corresponds to an infinitely favorable
pressure gradient. Stewartson (ref. 14) has shown that
B=1 (m=1) corresponds to flow in the immediate vicinity
of a stagnation point for two-dimensional flow, as in the
incompressible case. It can be shown that the case of a
stagnation point in axisymmetric flow can be transformed
to the solution for =% (ref. 24). An approximate method
for relating B8 to more general physical flows is given in
reference 17. In the present investigation, solutions are
found for pressure gradients ranging from that causing
separation to the infinitely favorable gradient and for wall
temperatures from absolute zero to twice {ree-stream
stagnation temperature.’

Asa further check on the

present method, the solutions for 8=1.6 and 2.0 with S,=0 were obtained independently in the present investigation; these values agree very well with those of Hartree,



All solutions are presented in tabular and graphic form.
Table I shows the values of f, f/, /7, S, and S’ tabulated
against 7. From these values and equations (18), the
quantities 7 and S” can be easily calculated. Table II
presents a summary of the values of fy (related to wall
shear) and S, (related to heat transfer) from table I, as
well as the Reynolds analogy parameter (;Re,/Nu, which
vepresents the ratio of skin-friction to heat-transfer eflects.
Certain other quantities of interest cannot be tabulated in
general, but can be easily calculated from the following
formulas:

Static-temperature ratio:

(5 ) a1 e (31)

2

or, with the static temperature ¢t referred to the free-stream
stagnation temperature to,

f rohar
7:(1+S)—— —r—fy'_l [ (32)
! 1+, M:
Flux density:
pU R A o (33)

o () o=
UNIQUENESS

For <0, S,=0, Hartree (ref. 7) first observed that the
boundary conditions (17) are not sufficient to determine a
unigue solution.  Thus, there is not a unique value of [
for a given 8. In studying the uniqueness, it is useful to
consider the following expression for velocity ratio (for any
Sw) valid for large »:

)2
f':1+[a1<n—x>-“ﬂ*“+?;<n—x)-*] (n\'l)[—(‘n Qi}taxnww
(34)

where o, ay, ay, and & are integration coustants (see appendix
B). For the case of S,,=0, ey 1s also equal to zero: however,
this does not change the uniqueness problem, which is inde-
pendent of wall temperature.  For >0, a, is necessarily
zero in order to satisly the boundary condition lim f'=1.

e
For continuity in 8, Hartree then selected the asymptotic
solution with a,=—0 for 8<0 also. More importantly, the

integral
Te u
) p(‘ul‘

related to the displacement thickness, can be shown to
become infinite for a0.  This result is contrary to the
concept of a thin layer outside of which the viscous effects
may be neglected. A further interpretation of the effect of
the , term on the solution can be observed by examination
of the dimensionless quantity [’/ (suggested by Pro-
fessors L. Croceo and i Lees), in which £ represents the
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net viscous forces acting on the fluid element and f’’ is

proportional to the velocity gradient (shearing flow). Tt
can be shown that for a,=0

him|—==)=1
ﬂ—)w 4
while for a,30
: N 12
ltm (—‘f,, =lim -1——4»\B_,=0
e\ ff )] e (n—x)*

Thus, in order to retain both the viscous forces in the
asymptotic region and the shearing flow set up by their
action to the same order of magnitude, «, should be taken
equal to zero.

Another feature of solutions with a, different from zero is
the analytical result that the velocity ratio in the outer
portion of the boundary layer may exceed unity. For
example, if a, is not zero, equation (34) shows that for large
n the a, term of the velocity ratio expression is dominant,
and thus (f/--1) is necessarily of the same sign as a,. That
is, for positive ., the velocity ratio approaches unity from
above; this phenomenon will be termed ‘‘velocity over-
shoot.” Sinee, for a given 8 and S, in this range, each of
these various solutions has associated with it a different set
of values of f, and Sy, one of these parameters, for example

fu, can be conveniently used in place of e, to identify the

various solutions. This infinite set of solutions can be
represented as in sketch (a) for a typical (cold wall) case.

I |

| |

110 } :

, § |
p 2

4o |
wu

| - . |

1.00 . -
|

| .
| |
ay >0 "i— a2<0—"r—a2>0

5 '
=
S|

[ |

gl |

! 3! |
w -—‘l

I

|

|

| |

fu

It is seen that there are a maximum and a minimum shear
(represented by fu) and heat transfer (represented by S5,)
that can satisfy the equations without incurring velocity
overshoot. These distinet solutions (circled points in
sketch (a)) correspond to a;=0°%; that with the lower shear
is designated the “lower-branch” solution. The behavior

8 1n the evaluation of the singularities of the integrals required for the method of suceessive approximations, @; was taken to be zero, Henee, solutions for @270 were obtained by forward

integration (appendix 1Y, although the numerical values of @ were not determined.
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of the calculated family of solutions is presented in figure 1
for S,=—038 and B=-0.325, —0.3285, and —0.336.
For a given value of S,, as 8 1s decreased, the two solutions
with a,=0 approach each other. At a value of 8 to be desig-
nated B, these two solutions become identical, and, for
B8<Bumin, N0 solution with a,=0 exists. For negative 8,
only the solutions with finite displacement thickness will be
considered in the remainder of this report.

[ A i B S S St S SN Al enctin St el S S B
Pressure-gradient 4 : T T r
T parameter, T T \ ‘
ST efm T[T
I [ © -. ol ;
= o 2336 A : B
g 30|l1 Flagged symbols denote | _| | i b |
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° . shear without velocity
£ el L ‘gversﬁc;ot 552= O), y |
© : : 1 ) !
g . . , %h‘HJ,AL, S R
- | o ‘
g 2 T
: TT T T
5 29| A T O S N B
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& .22 R 1
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S ! ! ‘ !
- Nl |
B LOI2% K\\ : r—i J . r | |
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8 ‘ : B
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- N ‘NN T -0.336|
= . T 7 T I i
2 oon S| B f 3285
E 1 \ s .325
N Raydan

000 s 04 T 96 T 08 0 a2 a4 e s

Shear function at wall, 7y

Fravre 1.—Fairily of solutions for adverse pressure gradient.
S.=—0.8.

With regard to the physical significance of the double
solution, it may be noted that for adverse pressure gradients
(8<0) a real flow cannot completely reproduce the similar
solution, because U,(0)= « would be involved. However, a
pressure field can, in principle, be applied to a developing
boundary laver so that, after a phase of adjustment, the
boundary layer would approach one of the similar solutions
with <0 and stay quite close to it thereafter. It seems
reasonable to believe that, depending on the way the pressure
field is applied, one solution or the other corresponding to
the same B could be approached after different adjustment
phases. This result is exactly what Clauser (ref. 25) has
found in his experimental work on similar turbulent
boundaryv-laver flows.

VELOCITY AND TEMPERATURE PROFILES

The velocity and enthalpy-function profiles obtained
from the tabulated solutions are presented as functions of
n in figures 2 and 3, respectively. The distance y normel to
the surface in the physical plane is related to the similarity

A98524—57 2

variabie # through equations (6) and (15), and mayv be
expressed as
__Pollo 2 X [t

Dot \/ m+1 107,

Y —dy (35)
: o to
where 1/; ix given by equation (32).

Velocity overshoot.—The velocity profiles shown in figure 2
indicate that, for a given wall temperature, the initial slope
increases as the pressure gradient becomes more favorable.
For adverse pressure gradients an inflection point occurs
within the boundary layer and moves outward as the gradi-
ent becomes more adverse. The velocity ratio varies mono-
tonically from zero to the final value of 1.0 except for the
cases of favorable pressure gradients with heated walls.
Then the velocity ratio in the outer portion of the boundary
layer reaches a maximum value greater than 1.0 before
returning to its final value of 1.0. This type of velocity
overshoot was also obtained in the investigation of reference
11 for favorable pressure gradients with heated walls and is
to be distinguished from that associated with the nonunique
(ay520) solutions which occur only for adverse pressure
gradients. When the wall is heated in a favorable-pressure-
gradient flow, the density within certain layers of the
boundary layer is lowered so that, in spite of the viscous
retardation, the flow is accelerated more than the external
flow by the external pressure forces. Thus, a velocity greater
than the external velocity may be obtained.

This phenomenon can be established by examination of
equation (34) and the corresponding asymptotic expression
for the enthalpy function (appendix B):

s=an—n exp[ =", (36)

For favorable pressure gradients, a,=0, as previously men-
tioned. Then, the a; term in equation (34) is dominant for
large . Thus, (f'—1) and «; are of the same sign. Hence,
for any case of a heated wall (o positive, eq. (36)) with
favorable pressure gradient the velocity ratio must finally
approach 1.0 from above. This is in contrast to the results
of reference 16 where “critical” values of S, greater than
zero were said to be required to produce overshoot. The
latter results are possibly due to the inability to detect small
overshoot using an analog computer.

Stagnation-temperature profiles.—Figure 3 shows that, for
Pr=1, the stagnation temperature varies monotonically
across the boundary layer from the wall value to the free-
stream value. For favorable pressure gradients with a cold
wall, there is small variation with 8 of this distribution. The
variation becomes more pronounced with an increase in wall
temperature.

Boundary-layer thickness.—The velocity profiles (fig. 2)
indicate that the boundary layer thickens as the wall shear
stress diminishes. Also, for a given value of the pressure-
gradient parameter 8, the boundary layer, when considered
in terms of %, thickens as the wall temperature is lowered.
However, in the physical plane (in terms of ¥) because of the
relation between y and 4 (eq. (35)), the trend is just the



REPORT 1293—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

T irrs LTSI
T N
wiA , i ‘ b ‘i_b
. f, , A w , — 4

Sl i e [T N S
et @ gy TP
RSN < e S N I

,4 ‘oupd £}190)3A

<

—0.8.

w

b) 8

0 (Hartree, ref. 7).

w

d) 8

(
(

(¢) S,=1.0.

Velocity profiles as functions of similarity variable .

(Asterisk denotes lower-branch solutions.)

Fiaure 2.



SOLUTIONS FOR COMPRESSIBLE LAMINAR BOUNDARY LAYER, HEAT TRANSFER AND PRESSURE GRADIENT 9

NN EEEEE T ENEEERE
T = -
79 1 ] // A
274 o . 749782580
2T /44,0 4D 4 B LAVaAp o ARt
Y /44D AD. WA |4
@ A A o Y, /ai |
> \/{ N . Y B . / 4 /] A D
c -4 ¥z ~F~ 5-4 4SSN B
8 AT 29 3 /4% 4 AR NN
g W ALIATT L5 < 747 QLS N Ry
2 C AT Y0 < 7@ NNRENLY
3.6 JATT o3 2 6 /L ANRNEENN g 9
s "Ll 388 2Lz oL b 355
£ 1 366" z 7 ~N T .- 3088Y
S [T $ -326¢ - w T 2eest T
-8 /, -.8 t—
v 7 L
(aH (b)
1.0 .t ! -10 0
0 | 2 3 4 5 6 0 | 2 3 4 5 6
7 n
0 ) - 1 1.0
AT AT A
A @
VY AA ” 8
i A / AN 1
1444 \ |
©» Y AAA) “ WA N
- { XXV B & NN B
5 T s -6 N -1 -1392
g 2l /, VAN - 0:5 § RO T ::%9
2= L < IR N P )
> 4 ~ -2 > 41114 .
Rl nuny/// ¢/ SuERRS E NN FRERENNWNEFRENT
£ _— A -.246 £ A2 _
c 4184 “p S235% z NN R
S 7 T ASNYEN
=31 4 i T - N
w74, 2 NANBNN
/ N N
B / \\ N
L \ ~ NN
1 : (c) e A (d)f
-4 ! 1 L
(o] | 2 3 4 5 6 o} ! 2 3 4 5 6
7 n
(2\) Sw= —1.0. (l)) Sw: —(0.8.
(©) Su=—0.4. @) Su=1.0.
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opposite. This emphasizes the necessity for careful con- | Momentum thickness:
sideration of the relation between the transformed quantities
and their physical counterparts. b:r /m—H lﬁc;} f/ d LE1—P) e 3
. . . Y ‘\ G) f) m= 7’ £ (')8)
The thermal boundary layer also thickens as separation is - < 7@
approached. The relative thicknesses of the dynamic and < .
. Thermal thickness:
thermal boundary layers may be conveniently observed
from a plot Of.S against f’ (fig. 4). Then if a fixed fra(:,tion of & mFI1UX_ (° Sdne NG J 39)
S, say 0.99, is chosen to define the thermal-layer thickness A 2 vo  Jo == o J7E § ’
and if the same value of velocity ratio is taken to define the
dynamic layer, it can be seen that, regardless of wall tempera- | Convection thickness:
ture, the thermal layer is thicker than the dynamie layer for
favorable gradients aad thinner for adverse gradients. m+1U )‘ f Sf'dn=— (40)
For Pr<1 the relative magnitude of the dynamic thickness X 2

to the thermal thickness will be decreased, since the Prandtl
number represents the ratio of viscous to thermal effects in
the fluid.
INTEGRAL THICKNESSES
The boundaryv-layer integral thicknesses in the trans-
formed plane are defined by the following relations:
Displacement thickness:

m+1 (MX

% fa S f;L

~—£+5®)]

fl/(g)

dt (37)

The numerical values of these thickness parameters for the
solutions presented are given in table II. The transformed
displacement thickness is negative for cases of favorable pres-
sure gradient with very low wall temperature. This occurs
because the surface cooling produces an inerease in density
near the wall so that there is more mass flow per unit flow
arca within the boundary layver than in the external flow,

£
il is also listed in table II.

The form factor H,,:=0
tr
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SHEAR AND SKIN FRICTION

The shear distribution in the boundary layer is presented
in figure 5, where 177 is plotted as a function of 5. The shear
function f” is related to the shear stress 7 through the
expression

2y-1 _
onu . f,)?“ /m+1 [’
=y e — (=« me e 1
Tk oy I:)\,uo l <fo Vo2 "04\7] /

For >0 the maximum shear is at the wall, whereas for 8<0
the point of maximum shear moves mereasingly outward as
the pressure gradient becomes more adverse.

The quantity that is of primary interest in boundary-layer
enleulations is the shear stress at the wall 7, which can be
made dimensionless through the definition of a local skin-
friction coefficient.  The resulting relation is

T iy S m—}:l ) vo
Lottt Ju 2N +8 )] \/ 2 X

(41)

(= (42a)

which, upon the introduction of a Reynolds number based on

{luid properties evaluated at the wall temperature, Re,,=—
14

y

w
bhecomes
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(Asterizk denotes lower-branch =olutions.)

— (42h)

O Rey o \/ m+1dIn X

2 "2 dlnx

The importance of evaluating fluid properties at the wall

temperature can be seen from the fact that the right member

of equation (42h) is constant for the case of the flat plate.

If the skin-friction coefficient and the Reynolds number

were to be based on local free-stream fluid properties, rather
Mo tr . .

than on wall values, a factor of4/>* W ould appear in the
lJ'(' w

right member of equation (42b). The range of this factor,

when evaluated using Sutherland’s viscosity law, is from

F.\1/4 to ~1/4 .
(7'5) at a low temperature level to <T> at high tempera-

ture levels.

The quantity fu is presented as a function of 8 and S, n
figure 6. It can be seen that heating the surface increases
the sensitivity of the wall shear to pressure gradient, while
cooling the wall has the opposite effect. A suggested
physical interpretation for this trend is related to the effect
of wall temperature on the mean density of the fluid within
the boundary layer. For the heated wall, the boundary-

layer density is less than that for the cooled wall, rendering
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Fravre 6.—Effect of pressure gradient on wall shear.

the heated boundary layer more susceptible to free-stream
acceleration forees than the cooled boundary layer.  Figure
6 shows further that a linear extension of the slope of the
curve f, against B from B=0 to large positive 8 would
grossly overemphasize the effects of favorable pressure
gradient; while the same linear extension toward negative 8
would underemphasize the effects of adverse gradient.

In figure 6(b), the two solutions with finite displacement

thickness that occur for adverse pressure gradients for a
given B and S, are plotted. It is seen that a double solution
1s indicated for even the insulated surface (S,=0), although
Hartree reported only one. In this case the lower-branch
solution corresponds to negative wall shear stress (separated
flow), which was not considered in reference 7. For heated
walls (S,>>0) both solutions may indicate separated flow
for B near B,.,, while for cooled walls both solutions may be
unseparated in this region. The physical interpretation of
these double solutions has been discussed in the section
Uniqueness.
HEAT TRANSFER

The variation of heat transfer across the boundary layer
is plotted in figure 7 in terms of the derivative of the enthalpy

function 8’=—=—- This quantity is related to the stagnation

enthalpy derivative in the physical plane by the expression

0 [h <pae\/m+1 U, ) .
OJ ho) p}]ao 2 V04\y g (4'3)

These curves again indicate the thickening of the thermal
layer as separation is approached. Furthermore, as separa-
tion is neared, the zone adjacent to the surface where S’ is
essentially constant spreads rapidly. This is a zone where
the heat transfer is primarily by conduction because of the
nearly zero velocities in the neighborhood of the surface.

The values of S’ at the surface (S3,) are shown plotted as a
function of pressure-gradient parameter 8 in figure 8 for
constant wall temperatures. Two facts are noteworthy:
(1) In the region of favorable pressure gradient, S;, is nearly
constant; (2) the heat transfer varies sharply near separation.
From these facts the additional conclusion may be drawn
that, if a linear extension of these curves is made with the
slope at =0, the result will seriously overemphasize the
effects of a favorable pressure gradient or heat transfer and
underestimate the effects for adverse pressure gradients.
A similar influence of pressure gradient on skin friction bas
already been noted. A comparison of figures 6 and 8 indi-
cates that the effect of pressure gradient on heat transfer is
smaller than the corresponding offect upon wall shear.

As with the skin friction, it is convenient to define a dimen-
sionless number from which the heat transfer may be
determined. The Nusselt number is

ot
<0y>u» RN \/n? FldinX
( Sw v e " 2 d In x (44)

The quantity (—S,/Se) is plotted in figure 9 for constant
wall temperatures as a function of the pressure-gradient
parameter 8. The Reynolds number Rey, is again defined in
terms of wall properties.

Reynolds analogy.—lrom expressions (42b) and (44),
a simple modified Reynolds analogy parameter is evaluated
by

Cile, 2 fe

Nu < s’ ) (45)
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This quantity is the reciprocal of the usual Reynolds analogy
quantity in order to avoid infinite values as separation is
approached. It is plotted in figure 10 as a function of the
pressure-gradient parameter 8. These curves resemble the
fw curves (fig. 6) because of the relatively small variation
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in magnitude of S,/S, compared with that of f,. The
variation of (WRe,/Nu is from zero to 7.4 for a surface of
temperature twice the free-stream stagnation value and
from zero to 2.8 for a surface held at a temperature of abso-
lute zero, as shown in figure 10. This indicates the inade-
quacy of utilizing the flat-plate value of 2.0, as has often been
done for estimates of heat transfer. Figure 10 is of particu-
lar use in evaluating the heat transfer for a problem when
used in conjunction with simple methods for determining
(), as proposed, for example, in reference 17.
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Fravre 100 - Variation of Reynolds analogy parameter with pressure
gradient,

SUMMARY OF RESULTS

From an analysis of the laminar ecompressible boundary
Iayer based on Stewartson’s transformation and including

effects of heat transfer and pressure gradient, the following
results were obtained:

1. If the condition of similarity is required and the Prandtl
number is constant but different from 1.0, the external Mach
number must be either zero, constant, or very large. If the
Prandtl number is taken as 1.0, the Mach number may be
arbitrary. The free-stream velocity distributions consistent.
with the similarity concept are either power-law or expo-
nential distributions in the transformed coordinates. Since
the exponential distribution appears to be limited to favor-
able gradients and in this range the problem may be reduced
to a special case of the power-law distribution, the caleula-
tions have been based on the latter class.

2. For flows with adverse pressure gradients, two classes of
solutions were obtained. One class is discarded because it
vields infinite displacement thickness. The elass retained
consists of two solutions with finite displacement thickness
for each adverse pressure gradient.

3. For heated surfaces with favorable pressure gradients, a
velocity overshoot, whichinereases with inereasingly favorable
gradient, results within the boundary layer. This excess
veloeity is associated with the aceeleration of a layer of fluid
in the outer portion of the boundary layer, with density less
than the external density.  Since this layer is subjeet to the
external pressure field and is restrained only slightly by the
viscous forces acting on it, it is accelerated more than the
external flow.

4, For a Prandt number of 1.0, when the thicknesses of
the dynamic and thermal boundary layers are defined by a
fixed fraction (say 0.99) of the veloeity ratio and stagnation-
temperature-difference ratio, the thermal boundary layer is
thicker than the dynamie layer for favorable pressure gra-
dients and thinner for adverse gradients.

5. The boundarv-layer displacement thickness is negative
for cases of favorable pressure gradient with very low wall
temperature.  This occurs because the surface cooling pro-
duces an increase in density near the wall so that there is
more mass flow per unit flow area within the boundary layer
than in the external flow.

6. The variation of a Reynolds analogy parameter is from
zoro to 7.4 for a surface of temperature twice the free-stream
stagnation value and from zero to 2.8 for a surface held at a
temperature of absolute zero, with the value 2.0 for the flat
plate.

[Ltwis Fricar Proruvrstox LaBoratory
NATIONAL Apvisory COMMITTEE FOR AERONAUTICS
CLeveLaND, Ouio, October 15, 1954
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APPENDIX A
SYMBOLS
sonic velocity Y
arbitrary constants
. . . 27,
local skin-friction coefficient, ({,=="%
Pulle Yy

specific heat at constant pressure
boundary-layer convection thickness
boundary-layer thermal thickness
function related to stream function by f=
g mEl

2VOUgX
asymptotic function, g=7s

6*

boundary-layer form factor, H =7

enthalpy
thermal conduectivity
Sutherland’s constant

, U
local external Mach number, ;’\chj
exponent from [7,=(X"
(%)

to—1ty

Prandtl number, P7‘=H]§2

Nusselt number, Nu=

static pressure
Pyl
M

Reynolds number, Rle,=

enthalpy function, S=%s-—1
9

static temperature
transformed longitudinal velocity compo-
- Uay
nent, U=—"—yy
Qe
longitudinal velocity component
transformed normal velocity component,
V= _“//X
normal velocity component
transformed longitudinal coordinate, X=
z Pea
N
0 Poo
longitudinal coordinate

398524 —57——3

@) ,Q;, ete.
8
Bmin

=TI

-

€ D&

Subscripts:

Other notations:

transformed normal coordinate,

normal coordinate
integration constants in asymptotic solution
2m

m-+1

minimum value of 8 corresponding to a
viscid solution for a given wall tempera-
ture

ratio of specific heats

boundary-layer displacement thickness

arbitrary small quantity

pressure-gradient parameter, =

e ) Y /m+1UX
similarity variable, =54/ ——=— —%
y a X 2 Yo
boundary-layer momentum thickness
integration constant in fi=n—«

)\:(M/_ﬂﬂ): t0+ksu>\/Zw
(t/t()) tw+k.vu t()
dynamic viscosity

kinematic viscosity, v=u/p
mass density

ou
shear stress, r=u —
oy
stream function: Yp=10", yy=—V

oscillation coefficient, eq. (C2)
damping coeflicient, eq. (C3)

local flow outside boundary layer (external)
result of jth iteration

stagnation value

transformed quantity

wall or surface value

free-stream stagnation value

asymptotic quantity

Primes denote differentiation with respect to 7.
A coordinate used as subscript represents partial differen-
tiation with respect to the coordinate.
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APPENDIX B
ASYMPTOTIC SOLUTION

To evaluate the integrals in equations (24) and (27),
it is necessary to have closed-form expressions for the
integrands concerned, in the range of large 9. This requires
a solution of the system

FH I =B = 1=8)
S +f8'=0

for large #, which is the asymptotic solution.

The asymptotic solution for f (designated f) is assumed to
consist of a sum of terms, each smaller than the preceding.
Only the first two terms will be discussed herein. The
corresponding solution for the enthalpy term S is also
obtained.

(18a)
(18b)

IJ(“ - . .
f=h+f (B1)
where
fe<f
fifi
Now, since lim(f)=t1, let
n—
Jr=n—K (B2)

where « i1s an undetermined constant. ,lffl 1s inserted into
equation (18), the corresponding enthalpy term S, must be
identically zero. Inserting equations (B1) and (B2) into
equutions (18) and dropping higher-order terms result in

B4 (—ofy =8 (27— S.)
: (n—« : ( (B3)
Sy 4-(n—0)8;=0

The energy equation can be integrated directly to give

-0’

= 2
Si= ("

which integrates once again to the complementary error
function (denoted cerf)

- ® _m=nf
Agz—(7f e ody
n

Szzaﬁ\/ g cerf (17-79—")
V2

or

(B4)

If equation (B4) is now substituted into the momentum
equation of equations (B3) with the notation

g(n=F
there results

" +(n—x) !/'—2!39:—%\/ 58 cerf(t:'() (B5)
o ‘\12
A particular integral to equation (B5) is
& [T (1

The complementary function can be found by noting that
the homogencous part of equation (B5) is Weber’s equation.
Hartree (ref. 7) gives the general solution for large values of
the argument (n—«) which can be written

st exp [ =T e —o® (8D

where o and o, are undetermined constants.
For 8> 01t is clearly necessary to take a,=0 if the boundary
condition lim g=0is to be applied. For 8<0 the boundary

condition does not require a,=0; this introduces a lack of
uniqueness in this range.  The significance of ay=0 was more
fully discussed in the section Uniqueness.

Using the first term of the expansion for the complementary
error function

{[1 —(E‘ix)ﬂL a ] (B8)

and combining the preceding equations result in the follow-
ing expressions:

Fr=1+| ay(n—r)- 8+ +%§(n——x)“l] exp [_(_’l;@f]_*_a?(n_x)?ﬂ

(34)
and

S=ay(n—x) [exp _(”,;’.‘)j (36)
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APPENDIX C
CONVERGENCE AND EXTRAPOLATION

The method of successive approximations used in solving
equations (24) and (28) is as follows: Two functions f5(f")
and S;(f’) are assumed and inserted into the right sides of
equations (24) and (28). This produces two new functions,
fim(f) and S;5(f"), on the left. The question of conver-
gence is the first to consider. In reference 2, Crocco treated
a momentum equation which was essentially equation (24)
with B=0. There it was shown that the result might con-
verge to a pair of functions between which it would oscillate
and of which the geometric mean was the proper solution.
In practice, the use of the arithmetic mean was demon-
trated to be adequate. In the same way in the present
case, the property of oscillation cannot be developed ana-
Ivtically; however, it has been found by trial that, if
fitfin

2
is reduced and a convergence takes place.
is shown in sketch (b).

is used in place of f7,, to obtain f7,,, the oscillation

A typical result

Iteration

Iteration

[

0 f
(b)

When the value for 8 for which a solution was sought was
sufficiently positive, the enthalpy function S also showed a
tendency to oscillate. In these cases, applying the same
averaging procedure to S again improved the convergence.
It was also found that convergence was improved if, in the

initial assumed function for f”/(f’), the slope %W) was
'. w

taken so that it satisfied equation (18a); that is,
ﬂf)z—ﬁa+sn
df, w Z)
When an iterative method is used to determine a function,
it is always desirable to develop a method of extrapolating

the result to correspond to a larger number of iterations
than have actually been carried out. This cannot be done
in an exact fashion unless a definite law of convergence is
established. Recently, an extrapolation method was devised
(ref. 26) that required four successive iterants for an arbi-
trary iterative computing scheme. The development
assumed that the remaining error after any iteration con-
sisted essentially of two terms, both of which damped by a
factor w with each iteration. The sign of one of these terms
was assumed to change with each iteration. This method
extrapolated a function by breaking it into n—-1 parts and
treating it somewhat like an n-dimensional vector. The
method has been demonstrated for Laplace’s equation for
which it was quite adequate. For nonlincar equations,
however, the method is not as suitable.

In reference 1, a method requiring five successive iterants
was developed which combined the method of reference 26
and the geometric mean rule. The function to be extra-
polated is considered to be made up of a set of numbers 7,
where the subseript ¢ identifies the particular component of
the set.  Then, the resulting relations for the ith component
of the extrapolated function / in terms of the preceding five
iterants, (F:); . . . (Fy)j14, where j is the iteration number,

are:
28 — 2.
Fﬁiiﬁgﬁ%:%yﬂﬁﬂ (1)
where the oscillation coefficient Q; is given by
. (Fi)j+4—w2(Fi)j+2
..Qi~ Y3 il C2
(Fi)j+3—w2(ﬁ i)j+1 ( )
and the damping coefficient w is
n Al \ Fi j+27 Fl j
2 (FD) e Fi) sl TEF%H?)—EF%]—]
w2: i=1 i)j+2 /314 (03)

3 s (P,

Application of this system was extremely effective. It
generally reduced the oscillation remaining after five itera-
tions by a factor of 10. A typical plot of the oscillation of
fv is indicated in figure 11.

—= .04 T S A B

2 f Extrapolation
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lteration number, /
Ficrre 11.—Plot of oscillation of £y,
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APPENDIX D

CALCULATION PROCEDURE

The successive approximation calculations were carried
out by means of IBM.Type 604 Calculating Punch machines.
The program was coded for fixed-point caleulation, with the
standard Function-Generating control panel used, plus a
control panel especially wired for rapid integration of quo-
tients by a trapezoidal rule. The step size (in ') varied
from a maximum value of 0.050 or 0.025 at f'=0 to 0.00001
at f/=0.9999, the total number of intervals being 122 in the
former case and 236 in the latter. By doubling and balving
the step size for a eritical case, the results are judged to con-
tain a maximum crror of 0.0002. Comparison with solutions
obtained by forward integration, for the same case, confirms
this accuracy. A given iteration (utilizing the 0.050 step
size) could be carried out in approximately 1% hours by an
experienced machine operator. If the averaging and extra-
polation techniques deseribed in appendix C are used, ten
iterations generally would suffice for the accuracy desired.
Tn contrast with forward integration, this number of itera-
tions is not a function of the experience of the person carrying
out the caleulations.

In the derivation of the integral relations (egs. (24) and
(27)), it was assumed that the velocity ratio varied smoothly
and monotonically from zero at the wall to 1.0 at infinity.
However, in the range >0 and S, >0 (favorable pressure
gradient and hot wall), the solution involves an increasing
velocity ratio to a value greater than 1.0, followed by a
smooth decrease to 1.0, Under these unusual circumstances,
the method of successive approximation derived herein

must be considerably modified if it is to be used at all.

Equations (18), together with the boundary conditions
(17), constitute a nonlinear two-point boundary-value
problem. Cases of this boundary-value problem were solved
by forward integration, with the IBM Card-Programmed
Electronie Caleulator (CPC) used to integrate with five-
point integration formulas.

For the cases where tha solutions are not unique (8<0),
the solutions were obtained in two patterns: [n one pattern,
Band S, were fixed and, for a set of values of 1, the quantity
8., was altered until boundary conditions at infinity were
apparently satisfied.  In the other pattern, f, and S, were
fixed and, for a set of values of negative 8, the quantity
S, was altered until boundary conditions at infinity were
apparently satisfied. An attempt was made with both
patterns to include the solution with the minimum value
of the maximum velocity ratio f,., within the boundary
layer. Except for those cases where no solution existed
without velocity overshoot, this minumum value was 1.0.

The details of the integration method used are deseribed
completely by Lynn U. Albers in an appendix to reference
27. The possible error contained in the results is indicated
in the footnote to table 1. Each trial run of a case required
approximately 30 minutes. A person considerably exper-
ienced with the method of obtaining solutions by forward
integration generally achieved convergence within 12 trials;
however, this number is perhaps insufficient by a factor of
the order of 2 if the person lacks experience.

REFERENCES

1. Cohen, Clarence B.: Similar Solutions for the Laminar Compress-
ible Boundary Layer with Heat Transfer and Pressure Grad-
ient, and Application to Integral Methods. PhD. Thesis,
Princeton Univ., 1954,

Crocco, Luigi: The Laminar Boundary Laver in Gases. Rep.
CF-1038, Aerophysies Lab., North American Aviation, Inc.,
July 15, 1948.

3. Chapman, Dean R., and Rubesin, Morris W.: Temperature and
Velocity Profiles in the Compressible Laminar Boundary Layer
with Arbitrary Distribution of Surface Temperature. Jour.
Acro. Sci., vol. 16, no. 9, Sept. 1949, pp. 547-565.

1. Low, George M.: The Compressible Laminar Boundary Layer
with Heat Transfer and Small Pressure Gradient. NACA TN
3028, 1953.

5. Howarth, L.: On the Solution of the Laminar Boundary Layer
Tiquations. Proc. Roy. Soc. (London), ser. A, vol. 164, no.
A919, Feb. 1938, pp. 547-579.

6. Falkner, V. M., and Skan, Sylvia W.: Some Approximate Solu-
tions of the Boundary Laver Lquations. R. & M. No. 1314,
British A. R, C., Apr. 1930.

7. Hartree, D, R.: On an Equation Occurring in Falkner and Skan's
Approximate Treatment of the Equations of the Boundary
Layer.  Proe. Cambridge Phil. Soe., vol. 33, pt. 2, Apr. 1937,
pp. 223 239,

8. Fekert, K.: Die Berechnung des Wirmeiibergangs in der laminaren
Grenzschicht umstromter Korper. VDI Forschungsheft 416,
Bd. 13, Sept.—Oct. 1942.

9, Tifford, Arthur N.: The Thermodynamics of the Laminar Bound-
ary Layer of a Heated Body in a High-Speed Gas Flow Field.
Jour. Aecro. Seci., vol. 12, no. 2, Apr. 1945, pp. 241-251,

[

10. Levy, Solomon: Heat Transfer to Constant-Property Laminar
Boundary-Layer Flows with Power-Function Free-Stream
Velocity and Wall-Temperature Variation. Jour. Aero. Sei.,
vol. 19, no. 5, May 1952, pp. 341-348.

11. Brown, W. Bryon, and Donoughe, Patrick L.: Tables of Iixact
Laminar-Boundary-Layer Solutions when the Wall is Porous
and the Fluid Properties are Variable, NACA TN 2479, 1951.

12. Tani, Itiré: Further Studies of the Laminar Boundary Layer in
Compressible Fluids. Rep. of Acro. Res. Inst., vols. 22-23,
no. 322, Tokyd Imperial Univ., Dee. 1944,

13. Illingworth, C. R.: Steady Flow in the Laminar Boundary Layer
of a Gas. Proc. Roy. Soc. (London), ser. A, vol. 199, no.
A1059, Dec. 7, 1949, pp. 533-558.

14. Stewartson, K.: Correlated Incompressible and Compressible
Boundary Layers. Proe. Roy. Soe. (London), ser. A, vol. 200,
no. A1060, Dec. 22, 1949, pp. 84-100.

15. Levy, Solomon: Effect of Large Temperature Changes (Ineluding
Viscous Heating) upon Laminar Boundary Layers with Variable
Free-Stream Velocity. Jour. Aero. Sci., vol. 21, no. 7, July
1954, pp. 459-474.

16. Li, Ting-Yi, and Nagamatsu, Henry 'T.:
Compressible Boundary-Layer Equations.
vol. 22, no. 9, Sept. 1955, pp. 607-616.

17. Cohen, Clarence B., and Reshotko, Eti: The Compressible Laminar
Boundary Layer with Heat Transfer and Arbitrary Pressure
Gradient. NACA Rep. 1204, 1956. (Supersedes NACA TN
3326.)

18. Li, Ting-Yi, and Nagamatsu, Henry T.: Similar Solutions of
Compressible Boundary-Layer Equations. Reader’s Forum.
Jour. Aero. Seci., vol. 20, no. 9, Sept. 1953, pp. 653-655.

Similar Solutions of
Jour. Aero. Sei.,



19.

20.

21.

23.

SOLUTIONS FOR COMPRESSIBLE LAMINAR BOUNDARY LAYER, HEAT TRANSFER AND PRESSURE GRADIENT 19

Cohen, Clarence B.: Similar Solutions of Compressible Laminar
Boundary-Layer Equations. Reader’s Forum. Jour. Aero.
Sci., vol. 21, no. 4, Apr. 1954, pp. 281-282.

Mangler, Werner: Die adhnlichen Losungen der Prandtlschen
Grenzschichtgleichungen. Z. a. M. M., Bd. 23, Heft 5, Oct.
1943, pp. 211-251.

Goldstein, 8.: A Note on the Boundary-Layer Iiquations.
Cambridge Phil. Soc., vol. 35, 1939, pp. 338-340.

Proc.

. Levy, 8., and Seban, R. A.: Skin Frietion and Heat Transfer for

Laminar Boundary-Layer Flow with Variable Properties and
Variable Free-Stream Velocity. Jour. Appl. Mech., vol. 20,
no. 3, Sept. 1953, pp. 415-421.

Lees, Lester: On the Boundary-Layer Equations in Hypersonie
Flow and Their Approximate Solutions. Jour. Aero. Sei., vol.
20, no. 2, Feb. 1953, pp. 143-145.

TABLE 1.—SIMILAR SOLUTIONS OF LAMINAR

B8=—0.326, S,=—1.0

7 ‘ f £’ ‘ " S ‘ N ;
T T T T — I |
0 0 0 0 —1.0000 ; 0.2477
.2 0000 | . 0001 . 0016 —.9505 | . 2477
4 - 0001 - 0009 .0065 | —.9009 | 2477 |
6 0004 | . 0029 0145 —.8514 ' .2476 !
'8 L0014 | 0069 . 0258 —.8019 | .2476 |
1.0 L0034 | L0135 . 0403 —. 7524 | . 2u475 |
1.2 | L0070 | .0232 - 0580 —.7029 | . 2472
1.4 | o120 0369 10788 — 6535 | 2468 |
1.6 10220 1 . 0550 1026 — 6042 | .2459 |
1.8 0352 | . 0781 1290 5552 . . 2445
2.0 L0536 | . 1067 1578 —. 5064 | . 2424
2.2 co783 | L1413 - 1882 —.4582 | . 2392
2.4 J1105 | . 1821 - 2196 —.4108 | .2348
2.6 . 1516 . 2291 . 2506 —. 3645 . 2288 !
2.8 2026 | . 2822 S2799  —.3195 ; . 2208
3.0 . 2648 | . 3409 . 3056 —.2763 | .2108 |
3.2 .3393 | 4042 - 3260 —.92353 | . 1985
3. 4 4267 | . 4708 - 3392 —.1970 | . 1839
3.6 5277 | . 5392 - 3434 —.1619 1 . 1672
3.8 16424 | . 6075 - 3377 —.1303 | . 1488 |
1.0 7706 | . 6737 - 3220 —.1025 | L1292
12 L0116 | . 7357 . 2969 —.0786 | .1092 |
L4 | 1.0645 | .7919 - 2642 —. 0588 | .0897
46 | 1.2279 | .8410 . 2265 —. 0427 | . 0713 |
£8 | 114004 | 8824 S 1867 —.0301 | 0548
5.0 | 1.5803 | 9158 . 1478 —.0206 | 0407 |
|
52 | 17662 | . 9417 L1123 —. 0137 | .0201 -
54 . 1.9566 | 9610 . 0818 —. 0088 | . 0201 |
5.6 | 21502 | . 9748 S 0571 —. 0055 | .0133
58 | 23462 | 9843 - 0383 —.0033 | .0085 |
6.0 | 2 5437 | . 9905 S 0245 0020 | . 0052
6.2 | 2.7422 | 0944 . 0152 —. 0012 | .0031 |
6.4 | 29414 . 9067 . 0088 —.0007 | .0016 |
6.6 | 3.1409 | . 9980 - 0050 —. 0005 | . 0009 |
6.8 | 33405 | .9988 . 0028 —.0004 | .0005 |

Where 8 and S, were initially fixed, the eigenvalues are believed to be correct to 20.0002.

case of =0.2460, S»=—0.4, where 8 and &', are believed to be correct to 40.002).

as large as twice the above amounts.

24. Schlichting, Herman: Grenzschicht-Theorie. Verlag und Druck

G. Braun, Karlsruhe, 1951, pp. 110-115.
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25. Clauser, Franeis H.:
Pressure Gradients.
pp. 91-108.
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COMPRESSIBLE BOUNDARY-LAYER EQUATIONS.!

B=—0.3657, S,=—1.0

1 7 /~ f/ f” S Sl
1 —_ |
0 0 0 0.0500 | —1.0000 i 0.2958
2 0 o000l Loto1 | 0522 9408 | . 2958
L. | o004l | 0211 | 0586 —.8817 | . 2956
.6 . 0096 . 0339 J . 0693 —. 8226 i . 2952
s | lorzs | los01 | losar | —7636 1 2944
L0 L0295 | L0678 | . 1028 7049 | 2031 |
1. 0452 | L0905 | 1252 — 6465 | 2000 |
La | loee0 | (1180 | 11509 | —.5886 2877 |
L6 | 0928 1510 | (1791 | — 5314 1 2832 |
18 | 1268 1898 | .2091 | — 4754 2771
| | - |
20 | 1691 . 2347 2395 . —. 4208 . 2690
22 | 2211 | 2856 | (2600 | —.3679 | 2588 |
24 2837 (3421 | (2056 | 3174 | 2461 |
26 | .3582 ! 1035 3174 | 2607 | 2308 |
28 | o445t (4686 | 3324 | —.2232 2131 |
! |
D30 | L5458 | L5350 | 3388 | —.1846 | .1930 |
3.2 | 16598 6035 3354 , —. 1482 . 1711 |
| %4 | 7871 | (6694 | .3216 : —. 1162 | . 1481
3.6 | .0273 | .7315 | 2983 — 0889 11248 |
38 | 10793 | 7881 - 2668 —. 0663 | 1022 |
so . L1l s3e 2290 — 0480 | o810 |
42 | L4140 | 8799 | 1904 — 0337 | o621 |
44 | 15935 | 9140 | 1513 —10229 0460 |
| 46 | 17791 | 9406 | 1154 — o151 | o328 |
L8| L9693 (0605 | 0843 — 0096 0225 |
50 | 21620 | .07T47 | . 0589 —.0059 | 0149 |
32| 23380 085 | 0395 | — 0035 | 009 |
54 | 25565 .9909 | 0253 | —. 0020 | 0058 |
56 | 27551 | 9949 | 0155 = —.0011 | .0034
5.8 | 29543 | . 9973 20092 | 0006 | o019 |
6o | 3asse | oosr | o052 | —oooa! oo |
6.2 | 33538 (0995 | (0028 | —I0001 (0006
64| BGET 909 L0014 — 0001 | 0003
1 1

|
|

|
i

! The acenracy of solutions obtained by the method of stiecessive approximations is believed to be £0.0002.  Solutions by forward integration were obtained in two patterns (appendix D),
Where /7 and S, were initially fixed, 8 and S% are believed to be correct to +0.0002 (except in the
The values in the tables are of comparable accuracy except at large », where the entries may contain errors

[
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TABLE 1—Continued. SIMILAR SOLUTIONS OF LAMINAR COMPRESSIBLE BOUNDARY-LAYER EQUATIONS,
{ B=—10.3884, Su=—1.0 \ [ B=—0.36, Sp=—1.0 |
— _ | —_
1 ! | | i |
T B B I } s s L I s
| —| T l_ r _*r _____ | T lﬂ*_*)— o y
0 0 ) 0.1400 | —1.0000 | 0.3527 0 L0 Lo 10.2448 | —1.0000 | 0.0400
.2 L0028 . 0282 . 1427 —. 9294 . 3527 Co2033 | L0050 | .050 . 2476 | —.9186 | .0399
40113 L0574 . . 1506 . —. 8580 . 3523 . L4024 . L0199 | .100 . 2532 —. 8391 . 0398
.6 . 0259 . 0887 1633 —. 7886  .3510 5942 | 0438 .150 | 2663 —. 7628 . 0396
o8 L olo470 1 1230 . 1803 —. 7186 .3485 L LTTT6 | L0759 . 200 L2793 | —. 6005 | .0392
S0 o040 L1611 L2010 1 —. 6493 | . 3443 L0524 | L1151 . 250 . 2029 = 6225 | .0385
L2 L1180 2036 2243 —. 5811 . 3379 1. 1193 . 1610 . 300 . 3061 —. 5588 . 0376
L+ . L1571 1 2509 L2491 1 — 5143 | 03200 1.2795 | . 2130 . 350 (3178 | —. 4993 | 0365
D16 L2125 | L3032 1 L2738 | —. 4496 ;L3171 14344 | . 2711 4003274 —. 4436 | . 0352
1.8 | -2787 . 3603 . 2063 —. 3876 .3020 ! | 1.5855 L3353 L4501 L3341 \ —.3915  .0336
b .
2.0 L3360 . 4215 L3149 — 3201 | 2831 D L7342 L4060 . 500 . 3375 | —. 3428 | .0318 |
2.2 . 4476 . 4859 . 3273 —.2745 | . 2616 1.8824 | . 4838 . 550 L3368 | —.2970 | . 0208
2.4 . 5513 . 5519 (3318 | —. 2246 2368 2.0318 1 . 5697 . 600 L3317 1 —. 2541 . 0275
26 ' .6683 . 6180 . 3270 —. 1800 L2096 ! 2.1847 | . 6653 . 650 L3215 | —. 2138 | . 0251
C 28 | L7984 | L6821 L3125 | —. 1409 L1811 2.3439 . 7728 | . 700 L3057 | 1760 ‘ . 0223 ‘
| 3.0 L9409 | 7423 | 2888 | —. 1076 . 1522 2. 5134 CB957 1. 750 L2833 0 —. 1405 | . 0194
3.2 | 10950 L7971 L2376 0 —. 0799 1242 2. 6995 1. 0400 J800 1 L2535 . —. 1074 .0162 |
3.4 1 1.2593 . 8450 L2218 1 — 0577 1 L0982 2. 9129 1. 2162 . 850 L2146 | —. 0765 L0127
3.6 | L4325 8855 | . 1827 —. 0405 0750 ‘
3.8 "Le130 | o182 ' 1448 | —. (275 0553 | 3. 1766 1. 4473 . 900 . 1646 —. 0479 | . 0089 |
j j / i ; r 3. 2397 1. 5043 910 . 1529 —. 0425 | . 0081
40 L7993 L9436 L1101 —. 0181 L0393 3. 3078 1. 5667 . 920 . 1406 —. 0372 . 0073
4.2 119900 ¢ 9625 | . 0802 —. 0115 . 0269 3. 3825 1. 6358 . 930 1275 —. 0320 . 0065 ‘
4.4 201839 9761 | 0539 . —. 0071 0177 3. 4654 1. 7133 . 940 1136 —. 0270 . 0057
4.6 23801 | 9833 | L0373 | —. 0043 - L0112 | |
4.8 25778 | L9913 | L0239 | — 0025 . 0068 3. 5596 1. 8023 . 930 . 0988 —. 0220 0048 |
! ‘ 3. 6123 1. 8525 955 | L0911 —. 0196 L0043 |
5.0 [ 27765 | L9931 L0146 — 0014 | . 0040 3. 6697 1. 9075 J960 . 0830 —. 0172 0029 !
52 029758 L9974 | L0086 | —. 0008 . 0023 3. 7332 1. 9686 965 | . 0746 —. 0148 . 0034 |
5.4 131754 | L9987 | L0048 | — 0005 | 0012 3. 8044 2. 0375 970 | . 0659 —. 0125 . 0030
56 3.3752 . 9994 L0026 0 —. 0003 . 0006 | 3. 8850 2. 1168 L0975 1 L0568 —. 0103 . 0025 |
58 135752 L L0908 1 L0013 | —. 0002 | L0003 3. 9822 2. 2110 . 980 . 0472 —. 0080 L0020 |
‘ | , ‘ 141012 ' 2.3279 1 985 . 0370 —. 0059 L0015 |
6.0 | 37751 | 1.0000 J L0006 1 —. 0002 . 0002 | | | } |
6.2 | 3.9751 [ L0000 | . 0003 ‘ —. 0001 . 0000 2604 | 2. 4851 . 990 . 0262 —. 0038 = .0010 !
i | 4. 3003 2. 5247 \ . 991 \ L0239 | —. 0034 | L0009
R - 43443 | 2.5682 1 . 992 L0216 | —.0030 . 0008 |
43933 | 26169 | . 993 \ . 0192 ~ 0026 | 0007 |
4. 4489 | 2.6722 | . 994 i . 0167 | —. 0022 1 0006
4.5134 | 2.7363 L9905 | 0142 | — 0018 | . 0005
4. 5905 28130 | .996 | .0117 . —.0014 0004 |
46872 | 29094 | .997 | L0090 | —.0010 | .0003 |
4.8187 | 3.0406 | .998 | 0062 . —. 0006  .0002 |
5. 0327 3. 2543 . 999 } L0033 | —.0003 | .0001 |
| 61247 } 4. 3446 ]1.000 | 0000 > L0000 . 0000 1
: i




0

—
W=
N D M
N=f=3]
(=28 \CRe]

W o
S ]
— [+
» (=]

btk ol ket i
N
]
(]
—

SOLUTIONS FOR COMPRESSIBLE LAMINAR BOUNDARY LAYER, HEAT TRANSFER AND PRESSURE GRADIENT

—

—_

SN NN NN

. 0039
. 0155
. 0347
. 0609

. 0941
. 1338
. 1800
. 2326
. 2918

. 3581
. 4320
. 5146
. 6072
L7123

. 8333
. 9761
. 1513

. 3819
. 4389
. 5014
. 5705
. 6483

. 7375

7878
8430
9043
9735
0531
1477
2652

4232
4629
5067
5556
6112

6756
7528
8495
9814
1963

B=—0.3, 8,=—1.0
J‘l j‘l ’ Aq ‘S '
Lo 0.3181 | —1.0000 | 0.4262
050 | .3196 —. 9331 .49261
S100 | . 3236 —.8669 | .4255
150 | .3292 —.8018 | .4239
200 | . 3359 —. 7383 | .4209
250 | .3427 | —.6766 | .4163
300 | . 3491 —. 6169 | .4095
350 | .3543 —.5593 | .4005
.400 | .3579 —.5039 | 3892
450 | .3591 —.4506 | .3752
500 | .3573 —.3004 | 3586
550 | .3525 —.3502 | .3393
600 | 3436 —.3031 | .3170
650 | .3302 —.2580 | .2018
700 | L3117 —.2148 | .2633
750 | . 2871 —.1735 | .2315
.800 | .2555 —.1342 | . 1960
.850 | .2155 —.0968 | .1565
.900 | . 1646 —. 0616 | .1122
.910 | . 1528 —. 0549 | . 1026
S920 | . 1404 —.0482 | . 0928
S930 | . 1273 —. 0417 | .0828
940 | . 1134 —. 0352 | .0724
950 | . 0986 —. 0289 | . 0617
955 | .0908 | —.0258 | .0562
S960 | .0827 | —.0227 | .0306
J965 | . 0744 —.0197 | . 0449
.970 | . 0657 —.0167 | .0391
S975 | . 0565 —. 0137 | .0332
.980 | .0470 —.0108 | .0271
.985 | .0369 | —.0080 | .0208
.990 | . 0260 —.0052 | .0143
.991 | . 0238 —.0046 | .0129
.992 | 0214 —.0041 | .0116 |
1993 | . 0191 —.0035 | .0103
.994 | .0167 —.0030 | .0089
0995 | . 0142 —. 0025 | .0075
996 | .0116 —.0020 | .0061
.997 | . 0090 —.0015 | .0046
S998 | . 0062 —.0009 | .0031
.999 | . 0033 —.0004 | .0016
1.000 | .0000 —.0000 | .0000

&
®
[
h
[+

b

3031

TABLE 1.—Continued. SIMILAR SOLUTIONS OF LAMINAR COMPRESSIBLE BOUNDARY-LAYER EQUATIONS.

B=—0.14, S,=—1.0

,’,, f f/ fl ’

0 0 0 0. 4165
. 1199 . 0029 . 050 . 4170
. 2397 . 0119 . 100 . 4179
. 3591 . 0269 . 150 . 4190
. 4783 . 0477 . 200 . 4199
. 5973 . 0745 . 250 . 4202
. 7164 . 1072 . 300 . 4194
. 8359 . 1461 . 350 . 4173
. 9563 L1912 . 400 . 4133

1. 0782 . 2431 . 450 . 4072

1. 2023 . 3020 . 500 . 3986

1. 3296 . 3689 . 550 . 3869

1. 4615 . 4448 . 600 L3717

1. 5995 . 5311 . 650 . 3525

1. 7462 . 6302 . 700 . 3287

1. 9053 L7457 . 750 . 2995

2. 0829 . 8834 . 800 . 2639

2. 2897 1. 0543 . 850 . 2204

2. 5484 1. 2809 . 900 . 1669

2. 6106 1. 3373 . 910 . 1547

2. 6781 1. 3901 . 920 . 1419

2. 7523 1. 4677 . 930 . 1284

2. 8348 1. 5448 . 940 . 1142

2. 9287 1. 6336 . 950 . 0991

2. 9813 1. 6837 . 955 . 0912

3. 0387 1. 7387 . 960 . 0831

3. 1023 1. 7999 . 965 . 0746

3. 1738 1. 8691 . 970 . 0658

3. 2555 1. 9486 . 975 . 0566

3. 3521 2. 0430 . 980 . 0470

3.4717 2. 1605 . 985 . 0369

3. 6319 2.3187 1 . 990 . 0260

3. 6721 2. 3585 . 991 . 0237

3. 7163 2. 4024 . 992 . 0214

3. 7657 2.4514 . 993 . 0190

3. 8217 2. 5071 . 904 . 0166

3. 8867 2. 5717 . 995 . 0142

3. 9643 2. 6490 . 996 . 0116

4. 0616 2. 7459 . 997 . 0090

4. 1939 2. 8778 . 998 . 0062

4. 4088 3. 0924 . 999 . 0033

5. 4938 41772 | 1. 000 . 0000

0

9453
8908

. 8365
. 7825

. 7288
. 6756
. 6229
. 5708
. 5192

. 4682
. 4178
. 3681
. 3101
. 2707

. 2232
. 1764
. 1304

. 0855
. 0766
. 0678
. 0591
. 0504

L0417
. 0374
. 0331
. 0289
. 0247
. 0204
. 0163
. 0121

. 0080
. 0072
. 0063
. 0055
. 0047

. 0039
. 0031
. 0023
. 0015
. 0007

. 0000

Sl

0. 4554
. 4554
. 4551
. 4541
. 4522

. 4490
. 4443
L4377
. 4290
L4179

. 4040
. 3872
. 3671
. 3433
. 3153

. 2827
. 2447
. 2005

. 1483
. 1367
. 1247
L1121
. 0990

. 0853
. 0782
. 0709
. 0634
. 0556
. 0476
. 0392
. 0305

. 0213
L0194
. 0174
. 0155
. 0135

.0114
. 0093
. 0071
. 0049
. 0026

. 0000




. 0861
. 1726
. 2596
. 3474

. 4364
. 5270
. 6195
. 7145
. 8126

. 9145
. 0211
. 1337
. 2539
. 3842

i ok — —

—

. H283
. 6922
. 8866

——

1344
1947
2603
3327
4135

5059
5578
6146
6776
7486
8300
9265
0462

HPRORRDNND RPN

3. 2069
3. 2473
3.2918
33415
3. 3980

3. 4635
3. 5418
3. 6400
3. 7738
3. 9916

5. 1056

. 0021
. 0086
. 0195
. 0349

. 0549

. 0798
. 1099
. 1456
. 1873

. 2358

. 2918
. 3566
. 4318
. 5194

. 6244

L7516
. 9122

[ Y

NN

N

A NN

. 1293
. 1839
. 2440
. 3109

. 3865

. 4738
. 5233
. 6777

. 6384

. 7071

. 7862

8805
9981

. 1568
. 1969
. 2410
. 2004
. 3464

. 4116
. 4895
5874
. 7209
. 9384

0521
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. 050
. 100
. 150
. 200

250
. 300
. 350
. 400
. 450

. 500
. 550
. 600
. 650
. 700

. 750
. 800
. 850

. 900
. 910
. 920
. 930
. 940

. 950
. 955
. 960
. 965
. 970
L 975
. 980
. 085

. 990
. 991
. 992
. 993
. 994

. 995
. 996
. 997
. 998
. 999

1. 000

. 3666

. 3277
. 2834
. 2324

| 1727
L1595

. 1457
oL 1313
( . 1163

| . 1005
oL 0923
‘ . 0839

. 0752
. 0662
. 0568
. 0470
. 0368

bL0259
©.0236
. 0213
. 0189
. 0165

| . 0140
L0115
’ . 0089
L. 0061

. 0032

. 0000

. 06000
. 9574
. 9147
. 8718
. 8285

. 7848
. 7406
. 6957
. 6501
. 6037

. 5564
. 5081
. 4587
. 4081
. 3561

. 3026
. 2474
. 1903

. 1307
. 1185
. 1061
. 0936
. 0809

. 0681
L0616
. 0551
. 0485
. 0418
. 0351
. 0283
L0215

-. 0145
L0131
L0117
. 0102
. 0088

. 0074
. 0059
. 0044
. 0030
. 0015

. 0000

Sl

0. 4948
. 4948
. 4946 -
. 4940
. 4929

. 4910
. 4881
. 4839
. 4781
. 4704

. 4605
. 4479
. 4319
. 4120
. 3873

. 3567
. 3189
. 2715

. 2110
. 1968
. 1817
. 1658
. 1486

. 1205
L0716 |
. 0998
. 0887 |
. 0769
. 0644
. 05611

. 1303 ‘

. 0366 !
. 0335
. 0303
. 0271
. 0238

. 0203
. 0168
. 0131
. 0092
. 0049

. 0000

TABLE 1.—Continued. SIMILAR SOLUTIONS OF LAMINAR COMPRESSIBLE

B=2.0, Se=—1.0

BOUNDARY-LAYER EQUATIONS.

. (678
. 1360
. 2051
. 2754

. 3472
. 4212
. 4976
. 5772
. 6606

. 7485

. 8421

S

WHUHERD NRPONNNRN RPN

. 9427
. 0520
L1726

. 3085
. 4659
. 6562

. 9030
. 9636
. 0299
. 1031

1852

2793
3322
3903
4548
5275

. 6109

7G99

. 8327

9977
0392
0844
13549

. 1939

2611

. 3414

4421
5792

. 8023
. 9344

. 0016
. 0068
. 0154
. 0277

. 0439
. 0643

. 0892
L1191
. 1545

. 1964
. 2456
L3035
. 3719
. 4534

L5820

. 6742

—— ek

L8314

. 0477
. 1026
. 1632
. 2310
. 3078

. 3967
. 4471
. 5027
. 5648
. 6351
. 7163
. 8130
. 9338

0967
1378
1831
2338
2913

3581
4381
5385
6753
8980

0298

. 050
. 100
. 150
. 200

. 250
. 300
. 350
. 400
. 450

. 500
. 550
. 600
. 650
. 700

. 750
. 800
. 850

. 900
. 910
. 920
. 930
. 940

. 950
. 955
. 960
. 965
. 970
L9975
[ . 980
. 985

Fo990
1)

. 992
. 993 |
. 994

. 995
. 996
. 997
. 998
. 999

1. 0600

. 8196
. 7814
. 7421
. 7012
. 6593

. 6155
. 5696
. 5215
. 4707
. 4172

. 3603
. 2996
. 2344

. 1639
. 1490
. 1339
. 1185
. 1028

. 0868
. 0786
. 0704
. 0620
. 0536
. 0450
. 0364
. 0275

. 0186
. 0167
. 0149
. 0131
. 0113

. 0094
. 0075
. 0057
. 0038
. 0019

. 0000

. 5086
. 5029

. 4953
. 4852
. 4721
. 4551
. 4330

. 4045
. 3674
. 3187

. 2528
. 2369
. 2198
. 2014
. 1814

. 1598
. 1482
. 1360
. 1232
L1097
. G964
. 0801
. 0636

. 0456
. 0418
. 0379
. 0338
. 0297

. 0254
. 0209
. 0163
L0114
. 0061

. 0000

. 0000
. 9647
. 9292
. 8933
. 8567
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TABLE 1.—Continued. SIMILAR SOLUTIOXNS OF LAMINAR COMPRESSIBLE BOUNDARY-LAYER EQUATIONS.

— = o SR I

g=—0.10, S,.=—0.8 : B=—0.2683, S,=—0.8 !
\ 7 ’ f \ f’ ) f” E S \ S | 7 i f ‘ f’ \ f” i N \ S’ 1
! . [ ———_ . — e —_ —
0 0 0 I —0.0686 | —0.8000 0. 0447 o 0 0 —0.0500 —0.8000 , 0.1829
.4 | —. 0053 | —. 0258 —.0603 | -—.7821 . 0448 .2 | —. 0009 ‘ —.0089 | —.0383 —.7634 | .1829
.8 \ —. 0202 ‘ —.0482 | —.0515 | —.7642 . 0450 ‘ o4 | —.0034 | —. 0152 —.0246 | —.7268 = .1830
I 1.2 ¢ —.0433 | —. 0670 | —.0425 | —.7461 . 0455 .6 | —. 0068 —.018  —.0090 —.6902 . 1832
1.6 —.0733 ' —.0821 —.0330 | —.7277 | .0466 .8 —.0106 —.0187 .0086  —.63535 . .1835
20 . —. 1085 —.0933 | —.0231 ! —.7087 . 0483
, ! 1.0 | —. 0140 ‘ —. 0150 | . 0282 ‘ —. 6168 ‘ . 1840
2.4 —.1474 | —.1005 | —.0123 | —. 6889 . 0509 \ 1.2 | —. 0163 | —. 0072 " .0499 | —. 5799 . 1845
2.8 . —.1882 . —.1030 | —.0003 | —.6679 L0544 | 1.4 | — 0166 ' .0051 L0737 | —.53430 . . 1851
3.2 | —.2291 © —.1004 L0136 | —. 6452 . 0591 1.6  —.0139 . .0224 - 20994 1 —. 5059 . 1857
3.6 . —.2678 | —. 0918 .0301 | —. 6204 . 0653 | 1.8 | — 0073 | .0450 | J1272 | —. 4687 | . 1861
40  —.3016 | —. 0759 L0501 | —. 5928 L0732 | | \ |
i | : | 2.0 .0044 1 . 0733 L1566 | —. 4315 ¢ . 1862
44 !~ 3273 —.0511 .0746 . —. 5616 . 0830 2.2 . 0224 . 1077 C1872 0 —. 3043 . 1857
4.8 —.3410 © —.0154 L1048 . —. 5260 . 0950 2.4 . 0479 . 1483 J2184 . —.38572 L1844
5.2 | —.3379 | .0336 L1413 | —. 4853 . 1088 2.6 . 0822 . 1951 . 2403 ‘ —. 3206 . 1821
5.6 | —.3121 | 0084 L1837 | —. 4388 1241 ‘ 2.8 . 1264 . 2479 2786 | —. 2845 \ . 1783
6.0 | —. 25681 .1811 L2301 | —. 3861 1392 | ‘ ‘
1 ‘ i 3.0 . 1817 . 3063 . .3049 . —. 2493 . 1730
6.4 | —. 1647 . 2823 .2752 | —.3278 . 1516 ‘ | 3.2 . 2492 . 3695 | .3264 | —. 2154 . 1657
6.8 | —.0287 . 3999 L3103 | —. 2656 . 1578 3.4 . 3297 . 4364 L3413 | —. 1832 . 1564
7.2 . 1566 . 5278 L3245 | —. 2029 1541 ! 3.6 . 4239 . 5055 . 3481 | —. 1530 . 1451
7.6 . 3935 . 6556 L3001 | —. 1440 1383 3.8 . 5320 . 5750 . 3455 —. 1253 . 1319
8.0 L6794 | . 7709 L2629 1 —. 0937 1118
| ‘ ‘ 4.0 . 6538 . 6430 3330 —. 1003 L1172
8. 4 1. 0071 \ L8632 1 . 1964 | —.0553 .0799 | 4.2 . 7890 . 7076 | 3109 | —. 0784 . 1015
8. 8 1. 3662 T9276 | L1270 | —. 0295 . 0497 \ 4.4 . 9365 . 7669 ‘ L2807 | —. 0598 . 0854
P92 1.7457 | . 9665 .0703 | —.0145 . 0267 4.6 1. 0953 . 8195 C2446  —. 0442 . 0697
L 9.6 2.1369 . . 9866 | 0332 —. 0070 . 0123 18 1. 2638 . 8644 L2052 —. 0318 . 0551
| 10.0 2. 5335 . 9954 0133 1 —.0038 | .0048
~ | 50 1. 4405 | . 9015 | . 1656 ‘ —. 0221 ‘ . 0420
| 10.4 2. 9324 . 9987 0045 | —. 0026 0016 ! 5.2 1. 6239 . 9309 L1283 | —.0148 . 0309
L 10.8 3.3321 : . 9997 0013 | —. 0022 0005 5.4 1. 8124 . 9532 .0954  —. 0096 . 0219
11. 2 3.7321 1 0000‘ 0003 . —. 0021 0001 | 5.6 2. 0047 . 9694 .0681  —. 0059 . 0150
; | 5.8 2.1998 | . 9808 | 0465 —. 0035 . 0098
6.0 2. 3968 | . 9884 ' .0305  —. 0019 . 0062
6. 2 2. 5950 . 9933 .0192  —.0009 | .0038
6. 4 2. 7940 . 9963 .0116 . —.0003 . .0022 |
6. 6 2. 9935 ‘ . 9981 | . 0067 .0000 | .0012 |
| 6.8 31932 | . 9991 | . 0037 | 0002 | .0007 !
I i i
70 3. 3931 9997 . 0020 . 0003 . 0003
’ 7.2 3.

5931 1. 0000 . 0010 .0003 - .0002 !
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TABLE 1.—Continued. SIMILAR SOLUTIONS OF LAMINAR COMPRESSIBLE BOUNDARY-LAYER EQUATIONS,

B
g=—0.3088, S,=—0.8 } g=-—0.325, S,=—0.8
‘ | | | |
2 T R 8 ‘ s / R O B 5
‘ | \ | ‘

0 0 } 0 . 0 ¢ —0.8000 : 0.2261 ‘ 0 0 0 L 0.0493 1 —0.3250 i0.2515
.2 - .0001 . 0013 L0137 —. 7548 . 2260 ‘ .2 L0011 L0113 .0640 ; —. 7491 | . 2545
.4 . 0007 | L0057 . 0303 —. 7096 . 2260 .4 L0047 L0258 L0819 - —. 6982 | . 2544
.6 . 0026 ! L0136 . 0496 —. 6644 . 2260 .6 L0117 L0442 | . 1029 —. 6474 . 2540
'8 .0065 L0257 L0716 | —. 61902 2258 8 L0227 0672126 5960 - 2531

B |

1.0 L0132 | . 0425 . 0963 —. 5741 | .2253 ‘ 1.0 . 038Y L0952 L1535 0 —. 5462 . 2516

1.2 . 0238 | . 0644 . 1234 —. 5209 ! L2245 1.2 L0611 . 1287 L1821 1 —. 4961 L2491

1.4 . 0393 | . 0920 . 1527 —. 4843 . .2231 | 1.4 . 0907 . 1681 L2121 —. 4466 . 2454

1.6 . 0610 | . 1256 L1835 ¢ —. 4399 L2209 | 1.6 . 1288 . 2135 . 2423 —. 3980 . 2401

1.8 . 0900 . 165¢ L2151 1 —. 3960 L2176 1.8 . 1765 . 2649 ! L2714 . —. 3507 . 2329

2.0 1 1276 L2116 ¢ . 2465 —. 3529 L2130 2.0 . 2351 . 3219 L2978 —. 3050 . 2236

2.2 ¢ .1750 . 2639 L2764 —. 3109 | .2067 ; I 2.2 . 3056 . 3837 . 3196 —. 2614 . 2118

2.4 1 .2335 . 3219 . 3031 —. 2704 | 1984 | P24 . 3889 . 4493 .3349 | —. 2204 L1977

2.6 ! .3041 . 3848 . 3247 —. 2317 ©  .1881 | 2.6 . 4855 L5172 L3420 | —. 1825 . 1812

2.8 ' .3877 L4514 . 3395 —. 1953 . 1756 2.8 . 5958 . 5855 L3396 . —. 1481 . 1626

3.0 ;| .4848 | . 5201 . 3458 —. 1616 | . 1609 3.0 L7196 . 6523 . 3272 —. 1176 . . 1426

3.2  .5957 | . 5890 | . 3423 —. 1311 | L1445 3.2 . 8565 L7157 L3052 |, —. 0911 L1218

3.4 . .7203 ‘ . 6563 | . 3286 —. 1039 | 1267 3.4 1. 0055 L7738 L2749 1 —. 0688 . 1012

3.6 | .8580 ° L7199 . 3055 —.0804 | .1082 3.6 1. 1656 . 8253 | .2388 | —.0506 . 0815

3.8 | 1.0079 LTy . 2742 —. 0606 . 0898 3.8 1.3352 ; .8691 . 1996 —. 0361 . 0635

4.0 1. 1687 . 8291 . 2372 —. 0444 . 0723 4.0 1. 5127 . 9052 L1604 ¢ —. 0250 L0477

4.2  1.3391 . . 8727 L1975 ¢ —. 0316 . 0563 4.2 1. 6967 . 9335 L1236 ¢ —. 0168 . 0346

4.4 ‘ 1. 5173 l . 9082 . 1580 —. 0218 . 0423 4.4 1. 8857 . 9549 L0914 ¢ —. 0110 . 0242

4.6 | 1.7018 ! . 9360 1213 . —. 0145 . 0306 4.6 2.0783 . 9705 . 0648 —. 0070 . 0163

4.8 1. 8912 L9570 . 0893 ‘ —. 0094 . 0214 4.8 2.2735 . 9812 . 0440 —. 0043 . 0105

! |

5.0 i 2. 0842 . 9722 . 0630 ‘ —. 0058 L0144 5.0 2. 4705 . 9884 . 0287 —. 0027 . 0065

5.2  2.2798 . 9827 . 0426 —. 0035 . 0093 5.2 2. 6687 . 9930 L0179 —. 0016 . 0039

5.4 24771 . 9896 . 0276 —. 0020 . 0058 5.4 2. 8676 . 9959 . 0108 —. 0010 . 0023

5.6 | 2.6754 . 9940 . 0172 —. 0011 . 0034 5.6 3. 0670 . 9975 . 0062 —. 0007 . 0013

5.8 | 2.8746 . 9967 . 0103 —. 0006 . 0020 5.8 3. 2666 . 9984 . 0030 —. 0005 . 0006

|

6.0 3. 0741 . 9983 . 0059 —. 0003 L0011 6.0 3. 4664 | . 9991 .0024 | —.0004 . 0005

6. 2 3.2738 . 9992 . 0032 —. 0001 . 0006 |

6. 4 3. 4737 . 9996 . 0017 —. 0000 . 0003

6. 6 3. 6737 . 9999 . 0009 . 0000 . 0001

6.8 1 3. 8737 1. 0000 . 0004 . 0000 . 0000

: |
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TABLE 1.—Continued. SIMILAR SOLUTIONS OF LAMINAR COMPRESSIBLE BOUNDARY-LAYER EQUATIONS.

n

0 0

v sl N

et et o

DSHRIND ODHRNCS WO OO

e e QOOEIOCE NIV

Prongn oo

Sooos
[\ Nl OSSN C s Rarls "N \Jeun]

~I=1

! I
0
. 0013 . 0153
. 0063 . 0039
. 0153 . 0565
. 0292 . 0836
. 0491 . 1159
. 0760 . 1538
. 1110 . 1974
. 15563 . 2470
. 2101 . 3021
. 2765 . 3624
. 3554 . 4267
. 4474 . 4939
. 5530 . 5622
. 6722 . 6297
. 8047 . 6945
. 9497 . 7546
1. 1061 . 8085
1. 2727 . 8552
1. 4477 . 8939
1. 6297 . 9249
1. 8172 . 9487
2. 0088 . 9662
2. 2033 L9785
2. 3999 . 9868
2. 5978 . 9922
2. 7967 . 9956
2. 9960 . 9976
3. 1956 . 9987
3. 3954 . 9994
3. 5954 . 9997
3. 7953 . 9999
3. 9953 . 9999
4. 1953 1. 0000
4. 3953 1. 0000
4. 5953 1. 0000
4. 7953 1. 0000

0. 0693
. 0842
. 1024
. 1238
. 1482

. 1750
. 2038
. 2331
. 2621
. 2892

. 3125
. 3301
. 3401
. 3412
. 3324

. 3138
. 2863
. 2520
. 2136
L1741

. 1362
. 1022
. 0735
. 0507
. 0335

. 0212
. 0129
. 0075
. 0042
. 0023

. 0012
. 0006
. 0003
. 0001
. 0001

. 0000
. 0000

g=--0.3285,8S,=—0.8

|
S 8
. —0.8000 | 0.2644
—. 7471 . 2644
—. 6943 . 2642
—. 6415 . 2636
—. 5888 . 2625
—. 5365 . 2605
—. 4847 L2573 |
—. 4337 . 2525
—. 3838 . 2459
—. 3355 . 2371
—. 2892 . 2259
—. 2453 . 2121
—. 2045 . 1958
—. 1671 L1772
—. 1337 . 1568
—. 1045 . 1353
—. 0796 . 1136
—. 0590 . 0925
—. 0425 . 0729
—. 0297 . 0556
—. 0201 . 0408
—. 0131 - 0289
—. 0083 L0197
—. 0051 . 0129
—. 0030 . 0082
—. 0017 . 0050
—. 0010 . 0029
—. 0005 - 0016
—. 0003 - 0009
—. 0001 . 0005
\
—. 0001 . 0002
. 0000 . 0001
. 0000 - 0000
- 0000 . 0000
. 0000 . 0000
. 0000 . 0000
~.0000 0000 |

ot et —

DO RND OO ERNCS PORNS WORHRNDS WOOHRINCS WS N

SO CTUIRIOIUT e WL DN

o

. 0023
. 0096
. 0226
. 0423

. 0696
. 1054
. 1510
. 2074
. 2755

. 3563
. 4503

. 5579

L6791
. 8134

. 9600

U

BO9 EIEILINS NN

1178

. 2855

4615
6443

8323
0242
2190
4158
6138

8127
0121
2117
4115
6114

8113
0113

. 0234
. 0502
. 0810
. 1164

. 1569
. 2027
. 2540
. 3105
. 3716

. 4366
. 5039
. 5720
. 6391
. 7031

. 7622
. 8151
. 8605
. 8981
. 9281

. 9510
. 9678
. 9795
. 9875
. 9926

. 9957
. 9976
. 9987
. 9993
. 9996

. 9998
. 9999

—0.3285, S, = —0.8
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TABLE 1.—Continued. SIMILAR SOLUTIONS OF LAMINAR COMPRESSIBLE BOUNDARY-LAYER EQUATIOXNS.

g=—0.325 §,=—0.8 ! g=-0.3,5,=—0.8

i O O I O T
7 0 r 0 Lo 0.1353 { — 0. 8000 ) 0.2913 | } 0 I o ( 0 0. 2086 . —0.8000 ' 0. 3154
C.3379 | L0080 . 050 1623 —.7015 | .2911 ! L2310 | .0056 | .050 | 2248 © —. 7271 | .3154
. 6210 . 0289 . 100 1922 —.6192 . 2897 L4447 . 0215 . 100 . 2435 —. 6597 . 3146
- 8632 . 0590 J150 L3314 . 5404 | . 2866 . 6423 . 0461 . 150 . 2629 —. 5978 . 3126
1. 0761 L0961 . .200 | .2487 | —. 4888 . 2819 L8259 .0782 | .20 . 2819 | —. 5407 . 3091
12677 ‘ . 1391 . 250 L2732 i —.4353 | .2757 ‘ . 9979 . 1168 . 250 2995 | —. 4879 | .3040
|1 3439 J1875 . 300 2044 | —. 3874 . 2679 'L 1605 . 1615 . 300 CB151 0 —. 4390 . 2973
1. 6087 . 2410 . 350 08120 | —. 3440 2587 | 3. 3159 L2120 | . 350 L3280 .. 3934 . 2888
1.7654 . . 2997 . 400 3258 —.3042 . 2479 1. 4660 L2882 . 400 . 3380 —. 3507 . 2786
1.9165 | . 3639 450 L3354 | —. 2677 | L2359 C L6124 3304 1 . 450 . 3445 —. 3108 . 2667
20643 . 4341 ‘ . 500 . 3406 2338 L2224 | 17568 | . 3990 . 500 . 3472 . 2732 L2530
2. 2108 C5110 | . 530 . 3412 —. 2023 . 2075 19010 ' . 4747 . 530 L3457 —. 2378 . 2376
2. 3582 . 5958 - 600 3366 —. 1729 . . 1913 2. 0468 . 5586 . 600 . 3395 2044 . 2204
2. 5088 . 6899 630 L3265 —. 1454 1737 2. 1964 L6521, . 650 L3282 1729 2013
26656 . .7958 700 | 3103 r —. 1197 1545 ‘ 23526 . .7576 | . 700 3111 —. 1431 . 1804
2. 8327 ‘ . 9170 ‘ . 750 L2874 —. 0956 1339 25194 | 8786 @ .750 2875 . 1149 L1574
30161 | 1.0592 ' 800 L2569 —. 0731 1118 2.7030  1.0210 ' .800 L2565 . 0883 1322
3. 2268 1. 2332 -850 2172 —.0521 ' . 0878 2. 9142 1. 1954 . 850 2166 . 0633 . 1046
34876 | 1. 4618 L9001 L1663 0 —. 0328 | L0618 32759 0 1.4246 L9060 ;L1657 . —. 0400 L0743
3. 5500 ‘ 1. 5182 J910 | L1544 J —. 0291 J . 0563 32385 | 14813 - 910 ‘ J1538 | —. 0356 L0678

L 3 6175 1. 5800 . 920 S1419 | - 0255 | 0507 } 33063 | 1. 5433 } 2920 | 1413 1 0312 0612
36015 1. 6484 930 S1286 0 —. 0219 L0450 {33806 1.6120 © .930 S 1281 —.0269 & .0545
3. 7737 1. 7253 . 910 1146 —. 0185 L0392 3. 4631 1. 6892 . 940 S1141 —.0227 . 0475
3. 8672 L8136 .050 & L0096 | —. 0151 | . 0332 3. 5560 1. 7779 L0950 | L0092 | —. 0186 . 0404
39194 | 18634 | 955 | (0918 ‘ 0134 @ . 0302 3. 6094 1. 8279 L955 | 0914 ‘ —.0166 . 0367
39764 | 19180 | . 960 | 0836 —. 0118 . 0271 3. 6667 1. 8827 L9060 | L0833 | —.0146 . 0330
40304 1.9786 J065 L0752 — 0102 . 0239 3. 7299 1.9436 | . 965 L0740 10126 . 0203
Co4 1101 2. 0470 L0970 L0664 0086 | .0208 3. 8010 20123 . 970 . 0661 —. 0107 0254
41011 21258 L9750 L0572 | —. 0071 | .O0176 3. 8823 20915 975 . . 0569 —. 0088 L0215
40867 | 22192 . 980 L0475 ‘ —.0056 | . 0143 ‘ 3.9784 | 21854 . 980 L0473 —. 0069 L0175
4. 4050 \ 2. 3354 ‘ . 985 L0373 L — 0041 ¢+ L0109 | 40972 | 2 3022 085 L0371 1 - . 0051 L0134

| ‘ : ; ‘ i |
45632 | 24917 J090 L0263 —. 0026 | . 0074 4, 2562 2. 4592 . 990 L0262 . 0033 . 0092
46029 2. 5310 . 991 -0240 —.002¢ | . 0067 4. 2061 2. 4986 . 991 L0239 —. 0029 . 0083
| 46466 | 2. 5743 . . 992 . 0217 | —.0021 | .0060 | 4. 3400 2. 5422 S992 L0216 —.0026 i .0074
4. 6953 2. 6228 | . 993 L0193 r —. 0018 r . 0053 4. 3890 2. 5908 | . 993 . 0192 —. 0022 | 0065
4. 7507 f 2.6777 | 004 r 0168 —. 0015 | .0046 4. 4446 2. 6460 . 994 0167 | - 0019 L. 0056

\
1. 8148 2. 7415 . 995 0143 ~. 0013 . 0038 | 4. 5090 2.7101 | . 995 L0142 ¢+ —. 0016 . 0047
4. 8915 2. 8178 . 996 0117 .0010 - . 0031 1. 5860 2. 7868 . 996 0117 S0012 . 0038
40876 | 2.9136  .007 J0091 1+ —.0007 | .0024 4. 6827 2. 8831 S997 . 0090 -, 0009 | . 0020
5 1186 | 3.0443 | . 998 | L0063 | —.0005 | .0016 | 4 8143 . 3.0144 .098 | . 0062 —.0006 | .0020
5.3319 | 3.2573 | L9990 | 0033 | —. 0002 } .0008 ! 50287 | 3. 2285 999 | L0033 ¢ —.0003 | .0010

i | ! : ' | i i
6. 4255 4.3506 - 1.000 - 0000 —.0000 ' .0000 6. 1270 4.3265 . 1. 000 L0000~ —.0000 | .0000

|
l
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TABLE 1.—Continued. SIMILAR SOLUTIONS OF LAMINAR COMPRESSIBLE

. 1294
. 2575
. 3841
. 5094

. 6337

L7572
. 8804
. 0039
. 1283

. 2546
. 3837
. 5170
. 6561
. 8038

9636
1417
3489

6077

. 6699

7375
8116
8941

9879
0405
0979
1614
2328
3145
4110
5305

6905
7306
7749

. 8243
. 8803

9452
0228

. 1201
. 2524
. 4678

. 5574

. 0032
.0128
. 0286
. 0505

. 0784
L1124
. 1524
. 1987
. 2516

L3116
I .3795
4562

. 5432
’ . 6429

. 8971

i . 7589
0682

—

. 2950
. 3513
. 4131
L4817
. 5588

— e —

. 6475
6976
7526
8138
8828
9623
0566
1741

3320
3718
4158
4647
5204

5849
6622
7591
8912
1062

IR NN N

8= —0.14, S,= —0.8

. 050
. 100
. 150
. 200

. 250
. 300
. 350
. 400
. 450

. 500
. 550
. 600
. 650
. 700

. 7380
. 800
. 850

. 900
L9010
. 920
. 930
L 940

. 950
. 935
. 960
. 965
. 970
075
. 980
. 085

. 990
. 991
. 992
. 993
. 994

L0995
. 996
. 997
. 998
. 999

1. 000

. 1669
. 1547
. 1419
. 1285
L1143

. 0992
. 0913
. 0831
L0747
. 0659
. 0567
. 0471
. 0369

. 0260
. 0237
. 0214
. 0191
. 0166

. 0142
. 0116
. 0090
. 0062
. 0033

. 0000

L5734
. 5300
. 4873
. 4453
. 4040

. 3634
. 3235
. 2843
. 2459
. 2081

L1711
. 1349
. 0995

. 0650
. 0582
. 0515
. 0448
. 0381

. 0316
. 0283
. 0250
. 0218
. 0186
. 0154
L0122
. 0091

. 0060
. 0054
. 0047
. 0041
. 0035

. 0029
. 0023
. 0017
. 0011
. 0005

. 0000

. 8000
. 7535
. 7075
. 6622
L6174

0. 3590
. 3590 ‘
. 3500 |
. 3580
. 3560

. 3530
. 3490
. 3440
. 3360
. 3270

. 3160
. 3020
. 2860
. 2670
. 2440

L2190
. 1890 \
L1540 |

1140
. 1050
0950
. 0860
. 0760

. 0650
. 0600
L0540 |
. 0480
. 0420
L0360
. 0300 ‘
. 0230

. 0160
. 0150
. 0130
. 0120
. 0100

. 0090
. 0070
. 0050
. 0040
. 0020

. 0000

BOUNDARY-LAYER EQUATIONS.

. 0768
. 1547
. 2339
. 3147

. 3971

L4817
. 5687
. 6586
. 7520

. 8406
. 9524

—d

e LIWMER NNNNNNNEND NN

L0614
. 1784
. 3058

. 4472
. 6086
. 8010

. 0469
. 1069

1723
2444
3250

4171
4690
5257
5887
6596
7410
8375
9573

1183
1588
2034
2532

. 3098

3755
4540
5526
6869
9056

. 0257

L0019
. 0077
L0177
. 0318

. 0504
. 0737
. 1020
. 1357
L1755

. 2219
L2759
. 3387
L4119
. 4979

. 6006
. 7258
. 8848

. 1003
. 1546
L2144
. 2811
. 3565

. 4436
. 4930
5473
. 6079
. 6766
. 7557
. 8501
. 9678

1268
. 1669
2111
2606
3168

U VP

o ot o ot kot

3821
4603
5586
6925
9109

A NN NN

. 0307

8=0.5, S,=—08

. 050
. 100
©. 150
\ . 200

. 250
. 300

L. 400
L 150

| . 500
L 550
. 600
} . 650
. 700

i . 750
\ . 800

. 850
. 900
. 910
. 920
. 930
. 940

. 950
. 955
. 960
. 965
. 970
L9975
. 980
. 985

. 990
. 991
. 992
. 993
. 994

. 995
. 996
. 997
. 998
. 999

1. 000

. 5993
. 5835
. 5659
. 5463
. 5246

. 5004
. 4737
L4441
L4111
. 3743

. 3333
. 2870
. 2345

L1737
. 1603
. 1463
. 1318
. 1166

. 1007
. 0925
. 0840
. 0752
. 0662
. 0568
. 0470
. 0367

. 0258
. 0235
L0212
. 0189
. 0165

. 0140
. 0115
. 0088
. 0061
. 0032

. 0000

—0.

8000

. 7690
. 7375
. 7056
. 6731

. 6400
. 6063
L8717
. 5363
. 5000

. 4627
. 4243
. 3848
. 3439
. 3016

L2577
. 2119
. 1641

L1137
. 1032
. 0926
. 0819
L0710

. 0599
. 0543
. 0486
. 0429
. 0371
. 0312
. 0252
. 0192

. 0130
. 0117
. 0105
. 0092
. 0079

. 0066
. 0053
. 0040
. 0027
. 0013

. 0000

- 004
. 000
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TABLE 1.—Continued. SIMILAR SOLUTIONS OF LAMINAR COMPRESSIBLE BOUNDARY-LAYER EQUATIONS.

— — - _1

\' B=1.5, Su=—0.8 f ! 820, S,— 0.8
P F—— e e—
- f l A | S i s ‘ n l f \ ' k i S N
0 0 0 (0.8689 | —0.8000 | 0. 4201 | 0 0 0 0.9480 | —0.8000 0. 4331
L0581 \ L0014 | .050  .8504 | —.7752 | 4261 | L0533 L0013 | 050 | Y255 | —.7768 4331
1176 | L0059 . 100 | L8296 | —.7498 4260 T 1081 J0054 | 1100 | 19003 | 7531 4330
1788 | L0136 150 8065  —.7238 = 4258 | T 1645 0125 | 150 8729 | —. 7287 . 1329
| l2418 | 0246 20 UTIZ a0 | La2ss 12229 L0227 | 200 . 8421 | —.7035 4324
| | | | | 1
3060 | 0303 | 250 Lis3r | —. 6603 | 4245 ‘ 2834 0364 | .250 | 8093 | —.6773 L4317
(3746 L0580 | .300 . 7240 | —. 6406 |, 4231 | 3166 L0538 | 0300 7743 | — 6501 4305
| 4453 [ C0810 | (350 | 6922 ( — 6108 r 4211 ( 4128 L0754 | 350 | (7370 | —.6216 4287
5104 1088 | 400 | L6582 | — 5707 | 4182 L4826 L1016 | 1400 | L6975 | — 5018 42061
(5075 | LmEl o) 450 el BT | 42 13565 . 1331 ‘ 450 6558 | —. 3604 4225
6805 | 1815 1 . 500 J 5838 ’ _ 5130 | 4088 | 6355 . L1706 | 500 J 6121 | —. 5273 . . 4175
7694 2283 | 530 | .5432 | — 4770 | (4015 17205 [2153 1550 | U562 | —. 4921 4108
18653 | 2836 600 | (5003  —.438) .31y | "8129 12686 600 | L5181 | - 4546 4019
L9701 | IBI91 650 | b7 | -lauss | l37o2 Y (3321 I6A0 | 1678 | 4144 (3898
L0864 | L4257 | 1700 | 4064 | 3554 | 3625 | | 10278 - (1087 | .700 | (4152 | —.3711 ' 3738
‘ | ! | | o8
L2079 ¢+ L5232 | 750 | L3540 | —. 3002 | . 3406 11570 5025 LTA0 LBO00 | —.3242 3525
371|620 ‘ 800 | 2998 | — 2502 ‘ 3017 CLB08G | G202 | T8N0 | CB0ly | —2i20 | 323
Cussiz | iss | olsso fadez | o—Taew | Tar2d C 103941 0 735 1 U850 | L2401 | —. 2066 2818
| . \ ‘ -
L7999 | 10085 | 000 { AT s |20 173TT 9870 | .00 | L1732 | —.1530 2209
DoLss07 | voe27 | Jo10 | 1603 | 1324 | 2063 7080 | iloais | L9010 | Lis90 | . 1405 2163
109252 101226 1 .920 1438 | — 1194 | 192) L8640 101020 920 | lraas | —l1267 L2016
1. 9977 1. 1897 . 930 i . 1308 —. 1061 1767 ‘ 1. 9372 11697 - L9300 L1206 —. 1125 . 18.06
20790 } 1 2657 | (930 1 D54 0924 | 150 | 220198 | 12465 | (930 [ 11142 } —0980 1680
2172018310950 0o 078 | L1416 | 21187 LEIST 050 L0082 | 0831 s
2.9250 | 13041 © .955 | L0910 & — 07i2 | 1317 21670 1.3864 955 | L0000 | —.075 .
2.2827 | 1. 4504 ‘ To60 | L0825 o logsh | lizis 22254 14424 960 | (0815 | —.0677 . . 1274
23460 | 1.5212 | 965 | L0738 | -.0565 | 1103 | 22003 L018  oga 07 0g% 1o
2. 4193 1.A912 . 070 | 0048 —. 0489 QY86 : . 36306 1. 575 97 L 06 | -. 0518 . d
25025 | 1.6721 | 975 | L0555 | —.0413 | .08l 20T 1GAT6 U7 L0549 —.0437 | 0803
26013 | 17687 | 80 ‘ 0459 ‘ — 0335 ‘ L0726 | 205176 | 17553 | (980 | [0851 | L0353 | lo7ez
R0 nses s oosss | Tozss |05 L 26718 0 18773 | L985 | L0354 | —. 0260 . 0608
2.8801 | 20524 | .o00 | 0252 { 0173 ’ L0419 28387 | 2. 0421 ‘ 000 | L0240 | —.0182 0438
29307 | 2.0935 | L9091 | 0229 | — 0156 | 0385 2.8806  2.0837 | .99 | (0227 | —.0164 | 0402
2 0764+ | 2.1389  .992 | 0207 . —. 0139 0340 20260 21295 | 992 | (0205 | — 0146 0365
30200 | 2B s | 010l | 0313 209785 201808 .993 L0182 |, —.0120 0326
| 30856 | 2.2473 | .994 | 0160 | —. 0105 | .027h 30371 202390 (993 o+ 0159 | — 0111 | 028
| ‘ | ‘ ‘ f _
31530 | 2314993 0136 — 0088 | 0230 BOSI 23066 995 0135 0093 L0246
32336 | 2.3046 | 096 | L0112 0071 0195 31864 . 2.3875 | L9096 | L 0ill 0074
| 3.3347 | 24953 097 | L0086 | —.0054 | .0152 32883 | 24891 | .997 | 0086 | —. 0056 | .0158
D 304724 . 26327 098 | 0060 . —. 0036 | 0107 34270 26274 (998 . (0059 | —.0037 0111
| 36004 ‘ 28564 . 900 ‘ 0032 . —.0018 . 0058 36526 28527 ‘ 009 L0031 —.0019 . 0060
‘ 48362 30950 o0 | o000 L0000 | . 0000 | e7o58 | 3056 | 1ooo | o000 L0000 | . 0000
‘ I | | ! |
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TABLE I.—Continued. SIMILAR SOLUTIONS OF LAMINAR COMPRESSIBLE BOUNDARY-LAYER EQUATIONS.

8= —0.2350, S, = —0.4 3 ; B=—0.2460, S, = —0.4 !

R — _ | | | w

N S Y L I S IR O A T O N A R S R

B ! | e - R
0 0 0 —0.0500 | —0.4000  0.1107 | 0 o . 0 | 0.4000 ' 0.1249 |

.2 | —. 0008 | —. 0071 